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Descriptional Composition of Compiler Components

John Tang Boyland�

September, 1996

Abstract

New machine architectures and new programming languages are always appearing,
and thus the need for new compilers continues unabated. Even experimental languages and
machines need compilers. Compiler writers developing new and/or experimental compilers
face competing pressures when designing their large-scale structure. On the one hand,
a more modular structure will make it easier to maintain, modify or reuse pieces of the
compiler. A more modular compiler is more likely to be correct, and reusable compiler
components lead to consistent semantics among the compilers using them. On the other
hand, a highly modular structure may lead to ine�ciencies in implementation.

Suppose one uses an intermediate representation and divides up the compiler into
two parts, one which compiles the source to the intermediate representation and another
which translates a program in the intermediate representation to the target machine lan-
guage. Doing so may make the compiler easier to understand, and furthermore, a well-
chosen intermediate representation may prove a suitable target for other source languages,
or a suitable source for translating to other machines. On the other hand, the need to create
and then traverse this intermediate representation may slow a compiler signi�cantly. If the
two parts are described in a high-level declarative formalism, descriptional composition can
be used to combine the two parts automatically so as to avoid creating and traversing the
intermediate structure.

This dissertation presents a declarative compiler description language, APS, and
a new method for descriptional composition. The language, based on a variant of attribute
grammars, contains a number of features that aid compiler writers in factoring descriptions
so that each concept can be expressed separately. Both a compiler for Oberon2 and a
front-end for APS itself have been written in APS. The back-end of the Oberon2 compiler
consists of a translation to a form of the \GCC tree" intermediate representation. Another
module gives the translation from this form to source-level C text.

A prototype compiler has been developed for APS that supports descriptional
composition. The descriptionally composed version of the Oberon2 back-end with the
translation to C text is no larger than the sum of the sizes of the modules from which
it is composed, yet it runs almost twice as fast. The Oberon2 compiler is the �rst successful
use of descriptional composition for a realistically complex system, and demonstrates the
e�ectiveness of combining the new APS description language and the new algorithm for
descriptional composition presented in this dissertation.

�This research was supported in part by the Advanced Research Projects Agency (DoD) under Grant

MDA972-92-J-1028, and by the National Science Foundation under Infrastructure Grant CDA-8722788. The
content of the information does not necessarily reect the position or the policy of the U.S. Government.
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Chapter 1

Introduction

Producing compilers for a multitude of di�erent languages and for a multitude
of di�erent machines is a task that cries out for software reuse. The number of potential
compilers is the product of the number of languages and the number of machines. Already
by the late 1950's, a universal intermediate language (UNCOL) was proposed in order to
reduce the number of compilers to the sum instead of the product (see Figure 1.1) [91].
Each full compiler would then consist of two stages: the front end that translates from
a particular programming language to the intermediate language and the back end that
translates from the intermediate language to a particular machine language.

SPARC CrayMIPS CM5

Modula3Haskell
Common
    Lisp Ada FortranC

SPARC CrayMIPS CM5

Modula3Haskell
Common
    Lisp Ada FortranC

UNCOL

Figure 1.1: The UNCOL problem and solution

The fatal weakness of this scheme was the speci�cation of the intermediate lan-
guage. If it was too simple, none of the front ends could communicate complicated idioms
to the back ends in order to use complex features of particular machines. It would also be
di�cult to specify important global properties (such as those needed for garbage collection)
without over-specifying the implementation in the intermediate language. If, to avoid these
problems, the intermediate language contained features from every possible language and
machine (an infeasible situation in itself), the intermediate language would be so complex
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that a back end would be nearly as complicated as the whole set of \direct" compilers it
was meant to replace.

One solution is to abandon the goal of having a single intermediate language and to
have several intermediate languages, each oriented toward a speci�c class of languages and
specialized for a certain class of machine. Each of these more limited intermediate languages

SPARC CrayMIPS CM5

Modula3Haskell
Common
    Lisp Ada FortranC

FSEQ IPARISEQ FPAR

Figure 1.2: Several intermediate languages

would be simpler than an intermediate language which attempts to handle everything. For
example, as illustrated in Figure 1.2, one might have specialized intermediate languages for
functional as opposed to imperative source languages. Similarly, the intermediate language
used for sequential target machines might be di�erent from the one for parallel machines.
The register transfer language of gcc [89], might be used as the intermediate language
(ISEQ) in Figure 1.2 for Imperative languages being compiled to SEQuential machines.

If there is no single universal intermediate language, there are still opportunities
for sharing between compiler stages. In Figure 1.2 for example, there are two front ends for
Ada (one that produces code in an intermediate language destined for sequential machines
and one that produces code for parallel machines). These two stages will have to perform
many of the same tasks, such as parsing, name resolution and type-checking that have little
if any relation to the ultimate machine for which the program is being compiled. This
situation is the same for the other languages and to some extent for the machine codes as
well.

Thus it is common to break up a compiler into at least four stages (see for exam-
ple gcc). Figure 1.3 shows how this situation would work with our example languages and
machines. The �rst stage does tasks that are completely machine independent and pro-
duces an intermediate form, that is, a representation of a program produced by one stage
and consumed by the next stage. This �rst intermediate form is often an abstract syntax
tree annotated with information gleaned during name resolution and type checking. The
next stage produces a language-independent low-level intermediate form taking into account
some properties of the target machine but still remaining mostly machine independent. The
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Figure 1.3: Four stage compilers
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low-level intermediate form may be optimized independent of both language and machine.
Optimizations are represented by cycles in the �gure, as these optimizations produce \bet-
ter" versions of the program in the same intermediate language. The third stage generates
a high-level form of the target machine language; assembly language is often used at this
point. Using assembly language rather than immediately generating object code removes
some operating-system dependencies from this stage. Finally the last stage is completely
dependent on machine and operating-system features; it produces an object �le and/or an
executable.

More sharing is still possible. For example, it might be that a number of languages
(say Modula-3, Ada and C) share certain features above that of the language-independent
intermediate language, such as the elementary data and control structures common in their
Algol heritage. Breaking up the second stage of each compiler for these languages into
two stages increases code reuse. The �rst stage would convert a language speci�c abstract
tree into a basic Algol-family intermediate language. The second stage would convert basic
Algol into the appropriate low-level language-independent intermediate language. Similarly,
it is likely that the stages that respectively convert the functional and imperative forms of
the low-level intermediate language for sequential machines perform many of the same
operations. Again breaking these stages into two enables sharing. One stage would be
particular to whether a functional language or an imperative language is being compiled
and another shared stage speci�c to the target machine language. It may be pro�table
to perform optimizations on the intermediate form passed between the two new stages.
Farnum [29, 30] proposes this use of multiple intermediate forms in order to increase reuse
of optimizations. See Figure 1.4 for how these considerations would a�ect our picture of
the compilers.

One of the stated purposes of UNCOL was to reduce the number of compilers that
needed to be written. In Figure 1.1, our example shows a reduction from 24 compilers to
10 compiler stages. The reduction would be greater if more languages or machines were
involved. In Figure 1.4, the number of compiler stages, even ignoring the optimizations, has
increased beyond that originally required to 29. By the number of stages alone, therefore,
the situation is worse. However such counting of compilers and stages makes the implicit
assumption that each compiler or stage carries equal weight. This assumption is clearly
wrong. A full compiler for Ada that reads in program text and produces SPARC machine
code is undeniably more complex than a front end that produces an abstract syntax tree.

Even so, an Ada compiler for the SPARC that consists of six compiler stages
(plus optimizations) is likely to be both larger and slower than one monolithic program.
In what way, then, can the situation in Figure 1.4 be considered an improvement of that
in Figure 1.1? One answer is that the aggregate complexity of the 24 compiler stages of
Figure 1.1 is likely to be greater than that of the 29 compiler stages of Figure 1.4. By the
criterion of reducing aggregate complexity, it is bene�cial to split a stage if one or both of
the resulting stages can be reused as shown graphically in Figure 1.5. By breaking up the
transformation from X to Z into two (simpler) transformations from X to a new intermediate
form XY and from XY to Z, it is possible to reuse the second stage to translate Y to Z,
presumably leaving the simpler problem of converting Y to XY.

But aggregate complexity is not the whole of the story. Compilers change. The
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Figure 1.4: Using multiple intermediate forms

language de�nition may have changed, or there may be a new slightly di�erent version of the
target architecture. New optimizations may be added. In any of these cases, all the places
in the compiler that deal with the changed concepts or methods must be updated. It eases
the revision process if each stage handles as few concepts as possible and if each concept
is handled in as few stages as possible. The scope of the change is limited to the a�ected
stages. Thus it may be bene�cial to split a stage if the modularity is thereby increased (see
Figure 1.6). We say that a description is factored when each idea, each conceptual task,
is expressed in a single place. Writing a description in factored form properly takes into
account the principle that all software should be developed in such a way as to prepare for
change.

These bene�ts of factoring, however, do not take into account the time or space
required by the compiler to perform its tasks. Factoring makes a description more modular
but increases the number of compiler stages used in a compiler. When a compiler executes
as a great number of stages, the compiler's performance is degraded. The compiler may
spend most of its time constructing intermediate forms or communicating between stages
to the detriment of the actual computation going on. Concern for e�ciency can lead a
compiler writer to use less factoring than would be desirable for reuse or for anticipating
change. For example, Sloane [86] claimed that a signi�cant portion of the memory overhead
in an automatically generated Icon compiler could be traced to the use of an intermediate
form, and suggests that the decision to use an intermediate form may have been a mistake.
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Figure 1.5: Splitting a stage to increase reuse
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Figure 1.6: Splitting a stage to increase modularity
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It is not necessary, however, that a compiler described as a series of many stages
actually execute as a series of serial passes. Compiler stages can be combined in automatic or
semi-automatic ways in order to reduce overhead. \Descriptional composition" is one such
technique that combines two compiler stages into a single stage. Descriptional composition
and other combination techniques allow a compiler writer to write factored descriptions
without necessarily incurring overhead during compiler execution time.

Therefore, in order to solve the problems of reuse and change posed in creating
compilers for a variety of languages and machines, we need two things. We need a compiler
description method that permits factoring at all di�erent levels of the description. We also
need tools for implementing these descriptions e�ciently, using combination techniques to
avoid the cost incurred by na��ve implementation of a factored description. In this disser-
tation, we present a compiler description language that enables factoring at many levels,
together with methods for combining factored descriptions to reduce execution overhead.

Section 1.1 discusses factoring and the ways in which factoring can be expressed.
Section 1.2 presents combination techniques and how they improve the e�ciency of im-
plementations of factored descriptions. Section 1.3 reviews existing compiler description
techniques and to what extent they support the factoring methods and the combination
techniques of the preceding two sections. In the �nal section of this chapter we discuss our
proposed solution and summarize the rest of the dissertation.

1.1 Factoring In Compiler Descriptions

The process of factoring converts a description in which a concept is expressed
multiple times into one in which it is expressed just once. The term is taken from mathe-
matics: just as 2x + ax + xz can be factored into the multiplication (2 + a + z)x, so also
can the algorithm described in the left column in Figure 1.7 be factored into the one on the
right. In the left column, we have an example of type checking simple expressions of the
form e1+ e2 or e1 � e2 for two subexpressions e1 and e2. If both operands are integers, the
resulting expression is also an integer. Otherwise, the result will be a real, with a possible
automatic coercion for an integer operand. The program fragment also checks that only
integers and reals are being combined. The tests for whether the result is an integer and
whether the operation is legal are handled twice, once for + and once for �. Also, there
are four places where the example determines that an automatic coercion is necessary.

In the factored version in the right column, every one of these tasks is done in only
one place. This factoring is made possible by converting the + and � nodes into general
OP nodes. The factored description also makes use of pattern matching to avoid having
to detect coercions redundantly for left and right operands on an expression. Factoring
can usually be accomplished in a variety of ways; the example simply gives a avor of two
methods that can be used.

An extreme form of factoring occurs when the same description is used to imple-
ment two related but di�erent systems. For example, one description could be implemented
both as a batch compiler and as an incremental compiler. Another example is a single de-
scription that can be used as a compiler and as a \decompiler" (a program that computes
a source-level version of compiled code).
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for each parse node n of the form x + y

if type of x is INTEGER and

type of y is INTEGER then

type of n is INTEGER

elsif (type of x is INTEGER or

type of x is REAL) and

(type of y is INTEGER or

type of y is REAL) then

type of n is REAL

if type of x is INTEGER then

coercion is necessary for x

elsif type of y is INTEGER then

coercion is necessary for y

endif

else

signal a type error

endif

for each parse node n of the form x - y

if type of x is INTEGER and

type of y is INTEGER then

type of n is INTEGER

elsif (type of x is INTEGER or

type of x is REAL) and

(type of y is INTEGER or

type of y is REAL) then

type of n is REAL

if type of x is INTEGER then

coercion is necessary for x

elsif type of y is INTEGER then

coercion is necessary for y

endif

else

signal a type error

endif

for each parse node n of the form x + y

convert into x OP y

for each parse node n of the form x - y

convert into x OP y

for each parse node n of the form x OP y

if type of x is INTEGER and

type of y is INTEGER then

type of n is INTEGER

elsif (type of x is INTEGER or

type of x is REAL) and

(type of y is INTEGER or

type of y is REAL) then

type of n is REAL

else

signal a type error

endif

for each parse node n of the form

x OP y or y OP x

if type of x is INTEGER and

type of n is REAL then

coercion is necessary for x

endif

Figure 1.7: Type-checking simple expressions in redundant and factored form
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1.1.1 The Problem of Redundancy

In order to see the bene�ts of factoring, it is �rst necessary to look at the problem
caused by redundancy, the opposite of factoring. Redundancy is present when some concept
is expressed more than once. When someone makes a change in a description, they must
take into account all the places where a concept is redundantly expressed. This subsection
describes the nature of redundancy and then discusses ways in which redundancy arises in
descriptions.

If some tool maintains consistency or at least checks the consistency among the
redundant expressions of a concept, this redundancy is called benign. Otherwise, the redun-
dancy is called dangerous, since it could lead to inconsistency. Such (unchecked) consistency
can cause a run-time fault. Moreover, dangerous redundancy increases the work needed
when maintaining a description over time. A bug �x or improvement in one location must
be manually repeated in all other locations redundantly expressing the same concept.

Not all redundancy is dangerous, or even undesirable. Programming languages
often require benign redundancy in the form of declarations or interface �les, and compilers
check that they are consistent. Moreover, not all dangerous redundancy could conceivably
be eliminated. For example, comments are desirable because they help explain some segment
of code. However, since comments cannot automatically be kept consistent with the code,
they are dangerously redundant. In this case, redundancy is necessary.

One instance in which unnecessary dangerous redundancy may arise is in describing
parsers. On the one hand, one might choose to use a parser generator such as the Unix utility
yacc[51]. One the other hand, one might choose to write a parser by hand. The second
alternative is much more likely to have instances of dangerous redundancy. Consider the
situation when the syntax of a statement in the language being parsed is changed. A parser
described using yacc typically requires only a single change to the a�ected rule. On the
other hand, in a hand-written parser, the change may be more profound. Not only must
the hand-coded parsing of that statement be changed, but if look-ahead sets have changed,
changes might be necessary in widely scattered areas in the parser. If those changes are not
made, it is likely that the parser will continue to work for most strings in the language even
though it is inconsistent. Thus dangerous redundancy can lead to subtle bugs. Thus we see
one of the advantages of a formal description; certain properties (such as look-ahead sets)
are represented implicitly and are computed by a tool and thus consistency is maintained
automatically.

The beginning of this chapter discussed a particular form of redundancy: redun-
dancy on the large scale of compiler stages. If we have two compilers for di�erent languages
but for the same machine, each compiler will need to perform instruction scheduling (among
many other tasks) for that machine. If the compilers do not share an instruction scheduler,
then there will be dangerous redundancy. An improvement in the scheduling algorithm
used by one compiler does not lead to improvement in the other compiler. A new version
of the machine with a di�erent instruction pipeline structure will require both schedulers
to be rewritten. Thus it is likely that unless a great e�ort is made, each compiler will be
less e�ective than it could be.

Dangerous redundancy often arises through ad hoc reuse of software, in which code
is simply copied from one place to another and then modi�ed as necessary. Ad hoc reuse is
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often the only method of software reuse that is possible; it is often the easiest form of reuse
in the short term. Unfortunately, the type of redundancy that arises with ad hoc reuse is
of the worst possible kind; the redundant expressions of the concept are often in widely
separated modules, written by di�erent people and the redundancy is not automatically
maintained nor even checked for consistency. Ad hoc reuse is thus one of the prime causes
of dangerous redundancy.

Ad hoc reuse actually ends up duplicating development and maintenance e�ort in
the future, because inconsistency is more likely to creep in and create subtle bugs in the
software. Why then is ad hoc reuse ever used? One reason is that ad hoc reuse may be the
only way to get any reuse at all. For example, the copy may apply to a di�erent type and
the programming language may not support polymorphism. Or the source expression may
not be modi�able but may need to be generalized in some way. Sadly, a common reason for
ad hoc reuse is that factoring takes too much time, either for the developer who must rewrite
the expression of the concept to generalize it, or in execution, in that a factored description
may be too ine�cient. For a simple concept expressed as a small fragment of a description,
duplicated development and maintenance cost may be smaller than the cost of factoring.
However, the more complex a concept and the larger the expression in a description, the
more costly ad hoc reuse will be in the long run, and the more worthwhile factoring ahead
of time will be.

The problem of redundancy therefore is that the existence of multiple expressions
of a concept means that multiple changes must be made when the concept is changed or
a better method of expressing the concept is to be used. The existence of multiple sites
leads to inconsistency when not every site is updated. Redundancy is benign if consistency
is maintained or at least checked by the tools that implement the description; it is danger-
ous otherwise. It seems unlikely that all dangerous redundancy can be eliminated from a
description, but it is desirable that it be reduced as much as practical.

1.1.2 Expressing Factoring

Factoring, the avoidance of redundancy, can be expressed using a number of de-
vices, some of which require speci�c support from the implementation language. In this
subsection we will discuss some of these devices.

It is possible to factor a description with no support whatsoever from the imple-
mentation language by using hand-written programs to generate redundant (but consistent)
descriptions. One can write a program, possibly with the help of a macro-processor such as
M4 [62] or the C preprocessor that can be run with di�erent parameters to generate software
fragments that have much in common. The resulting redundancy is benign, as long as it is
maintained automatically (perhaps using some form of a \make�le" or script). This method
of factoring is often di�cult and messy as it involves a lot of small programs that create
software fragments. It can be di�cult to understand software systems written in this way,
since, in e�ect, each generation tool de�nes its own language. Moreover, debugging applica-
tions built using many generated pieces may be di�cult. Therefore, maintenance becomes
more expensive. In the case of the programming language C, use of a macro-processor
is standardized. Even in C, the macro-processor operates on tokens, not on well-formed
subexpressions. Consequently, the pieces into which redundant expressions are factored are
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not valid language fragments. Errors are reported by the compiler for the expansion, not
for the human-written source. That is, since tools outside the language are used to produce
consistent versions, the language's own compiler cannot be used to check the fragments by
themselves.

Most programming languages provide a way to factor out code that di�ers only in
what particular values are used. The parameterized fragments are variously called \proce-
dures," \functions," or \subroutines." Tools such as compilers can check that a procedure
is well-formed without knowing what values will be used for the parameters. In some
languages, program units may be parameterized by type as well as by value. Type param-
eterization (also known as \polymorphism") is an important factoring tool and is better
than using textual macro substitution because it works within the language. Errors can be
caught by the compiler and expressed in source form. Generics in Ada and templates in
C++ provide this functionality.1 Functional languages such as ML or Haskell provide full
checking for functions parameterized by type. Dynamically typed languages such as various
versions of Lisp or Smalltalk provide polymorphism, but compilers cannot guarantee type
safety.

Even if a programming language provides polymorphism, and especially where
polymorphic entities have to be described using special constructs, it may be necessary to
rewrite a non-polymorphic fragment into a polymorphic one before it can be reused. This
process involves identifying what will be shared and what will not be.

A form of reuse called inheritance makes a controlled form of reuse easier, because
it is not necessary to decide a priori what will be reused and what will not be reused.
Inheritance is most common in so-called object-oriented programming languages. Inheri-
tance allows one module (\class" in an object-oriented language) to include the features
of another module. Some languages permit more than one module to be inherited; this
facility is called multiple inheritance. Multiple inheritance is desirable for the purposes of
factoring because it permits more reuse. In many object-oriented programming languages,
however, if one module inherits from another, it is considered a subtype of that module.
Unless inheritance can be separated from subtyping, inheritance must either be restricted
or it may lead to type insecurities [21, 87]. Several languages, notably Sather [93], com-
pletely separate inheritance from subtyping in order to maximize the implementation reuse
possible with inheritance.

In the previous subsection, we mentioned that a parser described using yacc ex-
hibits factoring; each grammar rule is stated once. Properties such as look-ahead sets can
be computed automatically from the description. A parser described by a context-free
grammar is more declarative than a parser written in a general purpose language since the
grammar speci�es the task that needs to be done (parsing) but does not specify how that
task is to be done. By omitting details of method, a declarative description give more
latitude to the implementation. A new implementation may do a better job with the same
description. For example, ex [77] yields faster scanners than the standard UNIX utility
lex [66] from the same descriptions.

Another declarative formalism is pattern matching. A pattern describes structure,

1Templates in C++ are weaker that Ada generics in that it is not possible to guarantee that an expansion
will not cause an error.
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not how to determine a match. A variety of sophisticated implementation techniques are
available to implement a description based on pattern matching [47].

A more declarative description may permit widely di�erent execution models. For
example, the same description could be implemented both as a batch compiler and as an
incremental compiler. Not only is the description writer relieved of the burden of writing two
separate descriptions, but it is far more likely that the two compilers will actually implement
the same language. Ensuring that separately written batch and incremental compilers use
the same language semantics is much harder to verify, especially if the language is undergoing
change.

In practice, there is not a hard distinction between declarative and non-declarative
description methods. Even a program written in a general purpose language such as C leaves
latitude to the implementation; a new compiler can yield a faster implementation of a given
program. To the extent that implementation decisions are taken by a shared implementation
tool (be it a compiler or a more specialized tool such as yacc); they have been factored out
of the individual descriptions being implemented.

Thus we see two advantages that more declarative descriptions have over less
declarative descriptions as far as factoring is concerned. A more declarative description
represents information implicitly (rather than explicitly and redundantly). Moreover, a
more declarative description method allows more of the work involved in realizing a working
system to be expressed in a shared implementation tool rather than in the descriptions being
implemented.

In the start of this chapter, we discussed the sharing of multiple compiler stages
as an important example of factoring. Such sharing is possible when a well-de�ned inter-
mediate structure is used to pass information from one stage to another. The fact that the
intermediate \tree" used in gcc is documented only with C header �les has hindered its use
as an intermediate language for other compilers (but recently, more information has become
available [61]). Sharing of compiler stages is hindered even further when the connection be-
tween two stages is not encapsulated in a structure at all, but in information sent back and
forth through many procedural interfaces. This situation exists in the case of gcc. Thus it
helps factoring if there is a way to declare intermediate structures and to ensure that two
stages communicate only through this structure.

In this section, we discussed the dangers of redundancy and ad hoc code reuse. We
also discussed the following ways in which factoring can be expressed:

� textual macros

� subroutines

� polymorphism

� inheritance

� declarative formalisms (including pattern matching)

� intermediate structures

Textual macros work outside the language and lead to a proliferation of complex meta-
tools. The other techniques operate within the description language and thus rely on the



13

implementation for e�ciency. Na��ve implementation of highly factored descriptions is likely
to lead to high overhead at runtime. The following section describes some methods for
implementing factored descriptions more e�ciently.

1.2 Combination Techniques

We have described a number of factoring techniques, but the relative e�ciency
of factored descriptions depends on the program that implements the description. The
execution cost of an implementation is relevant because the person writing a description
may be wary of the cost of factored descriptions. Since factored descriptions require more
discipline to write, the envisaged e�ciency loss can lead the description writer to create a
less factored description. Hence the lack of good implementation techniques not only leads
to ine�cient implementations, but also hinders factoring. Development and maintenance
costs for software production are thus increased.

In this section, we examine some known implementation methods that can be
used to reduce or eliminate the overhead in factored descriptions. Better implementations
of course yield more e�cient programs. More importantly, as program writers become con�-
dent that factoring will not necessarily lead to ine�ciency, they will write better structured
programs.

1.2.1 Inlining and Specialization

Subroutine inlining is a well-known practice for reducing the cost of a factored
description. When a subroutine does such a simple task that the overhead of calling the
subroutine is a relatively large fraction of the execution time, it can be bene�cial at each
call site to compile the body of the subroutine rather than compiling a call. If the compiled
procedure body is larger than the compiled call, inlining the procedure will increase the size
of the compiled program. Thus inlining usually only bene�cial for small procedures.

A subroutine or polymorphic entity may be specialized by being compiled under
some assumptions about its parameters. A specialized entity may often be faster than
a general form because known values may be faster to handle than unknown ones, and
more signi�cantly because partial evaluation (described in the following paragraph) may
apply. Specialization can be thought of as inlining of a meta-program taking parameters
and producing a specialized entity. Generics in Ada are usually implemented in this way; a
compiler will compile a new instance of a generic for each instantiation in the program.

After inlining, it may happen that some of the parameters have known values,
or that certain conditions in the inlined subroutine can be determined at compile time.
Constant propagation and more generally partial evaluation, can be used to improve the
execution of a program. Constant propagation is most often associated with imperative
languages and partial evaluation with functional ones. In constant propagation, the compiler
notices which uses of a named entity will always get the same constant value. When the
values of entities are known at compile-time, expressions can be evaluated and control-ow
simpli�ed at compile-time as well.
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1.2.2 Descriptional Composition and Deforestation

When one stage produces a data structure to be traversed and processed by the
next stage, combining the two stages is not a simple matter of subroutine inlining. Instead,
somehow, the production and traversal actions must be interleaved. Moreover since the
structure may not be created in the same way as it is traversed, the control structure of
the combined stage must often be more complicated than either of the two original stages.
Ganzinger and Giegerich call this task descriptional composition [39] (to stress the fact
that interleaving is necessary), and Wadler coined the term deforestation [97] (because
intermediate \trees" are being removed). Other researchers in functional languages use the
term fusion [65]. The term deforestation is usually used when the production and traversal
actions are each expressed in a single function and the term descriptional composition is
usually used the tree is produced by one \attribute grammar" and traversed by a second.
In principle, however, the process has the same e�ect in each case.

Descriptional composition allows a programmer to use a method that is clear
and clean, but would otherwise seem ine�cient in intermediate resources. For example, a
factorial function could be de�ned by creating a list of integers (a library routine) and then
reducing the list using multiplication (the reduction function also being a library function).
A \deforesting" compiler would compile this function into one that would perform the task
without allocating any list elements.

In order that such a combining tool do its task, it must be able to distinguish gen-
eration of structure and traversal of structure from other actions done by stages. Moreover,
since it should be possible to combine a combined stage with yet another stage, it must also
be possible to express the more complicated control of a combined stage in the original for-
malism. For these reasons, descriptional composition has only been implemented for highly
declarative languages and for attribute grammars, the latter being a declarative tree-based
formalism that will be discussed later. Moreover, all reported instances of descriptional
composition have involved unrealistically simple tasks.

As with inlining, descriptional composition does not always increase e�ciency; the
resulting stage is often bigger than the two stages combined to form it. However, also as
with inlining, the resulting stage often can be improved using partial evaluation.

1.3 Compiler-Description Methods

In this section, we consider methods for describing compilers. For each method
we discuss the support for factoring. We also look at speci�c implementations and to what
extent combining methods are available for making factoring e�cient. Section 1.3.1 and
Section 1.3.2 briey discuss the issue of writing compilers using general purpose program-
ming languages, �rst with imperative languages and then with more declarative languages.
Section 1.3.3 describes some special purpose compiler description methods. Section 1.3.4
concludes with a discussion of one particular class of these methods, attribute grammars.
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1.3.1 Imperative General-Purpose Programming Languages

It would be impossible do justice to all the imperative languages that are useful
for writing compilers, but this section attempts to give a brief outline.

One particular language, C, is often used to write compilers because of its exibil-
ity in handling characters and dynamically allocated structures, and because C compilers
usually produce e�cient code. C, like most imperative languages has subroutines (\func-
tions") and, through its required preprocessor, has textual macros. It lacks any method
for polymorphism other than subverting the type system through unsafe binary level type
reinterpretations. C has the power to declare complicated pointer-based data structures but
the lack of polymorphism or controlled subtyping often reduces their declarative power. C
compilers can perform inlining (usually only with compiler directives) and constant propa-
gation, but descriptional composition is problematic, as we shall see.

Other more modern programming languages (for instance Ada, C++, Modula-
3 [74], and Oberon2 [73]) provide various forms of polymorphism allowing for more factoring
and better descriptions of structure. Specialization of polymorphic entities (generics in Ada
or templates in C++) is usually done as a matter of course.

Common Lisp [90] provides many factoring methods, including fully-general syn-
tactic macros and a powerful object-oriented facility in CLOS. The dynamic semantics of
Common Lisp (allowing, for example, a function de�nition to be replaced at runtime) makes
it harder to perform combining techniques such as inlining and partial evaluation without
programmer annotations. Various subsets or near subsets of Common Lisp have been pro-
posed to make such optimizations easier such as Goerigk et al's CommonLisp0 [43] or the
ISO's draft of ISLISP [49].

One of the features of imperative languages is that structure can be changed de-
structively. The programmer speci�es control explicitly in order to ensure that destructive
updates are sequenced correctly. The �rst feature makes descriptional composition prob-
lematic because destructive updates in the stage creating an intermediate structure and
those in the stage traversing it may interfere with each other. Moreover, much analysis is
required before a compiler can safely modify a programmer-de�ned single thread of control.

1.3.2 Declarative General-Purpose Programming Languages

In declarative programming languages such as Prolog and Haskell, the programmer
expresses what values need to be computed rather than how they are computed. In such
languages, destructive update is restricted or eliminated altogether as a language feature
in order to preserve the quality of referential transparency , which roughly means that the
same expression computes the same value wherever it might occur. Such properties permit
more control-ow decisions to be made by the compiler. Consequently, some optimizations
are easier to perform.

Haskell is a side-e�ect-free language; in particular, there are no programmer-visible
destructive updates. Moreover it is lazy; no actual parameter's value is computed unless it
is actually needed. These features provide a challenge to the compiler writer; na��ve imple-
mentation yields very ine�cient programs. Compiler writers have risen to the challenge,
not only performing inlining and partial evaluation (see, for example, Peyton Jones and
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Launchbury's description of \unboxing" transformations [79]) but also providing Wadler
style deforestation [42, 71, 97]. Unfortunately it appears that deforestation is only imple-
mented for simple cases (one recursive function de�nition using built-in operations) and the
technology is not yet sophisticated enough to support the implementation of full compiler
stages.

Prolog programs express the logical relations between inputs and outputs and
thus the same program may be understood as mapping inputs to outputs or as mapping
outputs to inputs. For example, a compiler written in Prolog can theoretically be used as
a decompiler (generating source code from object code) [10]. As mentioned earlier, this
feature is an extreme form of factoring; the connection between the source and object is
described in a single place rather than requiring two speci�cations. In practice, however, the
implementation model used by Prolog often makes \backward" runs prohibitively expensive
or even non-terminating.

In languages without assignment, there is no separation between the concept of
\value" from \container of values" (that is, an \object"), so there is no concept of object
identity (as abstraction of address). As a result, it is not possible to directly model the
attribution of trees in such languages. In fact, it is impossible to distinguish trees from
directed acyclic graphs. This feature has its advantages, but for graph algorithms and more
speci�cally for various compilation tasks, this feature can be a hindrance.2 Chapters 5 and 6
demonstrate the utility of object identity in compiler descriptions.

1.3.3 Special-Purpose Compiler Description Systems

Rather than use a general-purpose programming language to write a compiler, one
might want to use a system especially geared toward writing compilers. Waite discusses the
conditions under which formal descriptions and the corresponding compiler construction
tools are useful [99]. Wilhelm discusses the particular issue of describing compiler trans-
formations [102]. Even without an e�cient implementation, a formalism can be useful for
prototyping new compilers or for speci�cation (for example, see Kasten's LIDO speci�cation
language [56]). Two very important characteristics are that the formal description must
be clearer than an operational description in a general-purpose language and should be
simpler. To these characteristics, I would add the requirement that a formal speci�cation
method encourage factoring, especially factoring methods speci�c to compiler writing, such
as pattern matching. If a formal description requires redundant unchecked speci�cation
where an operational solution does not, then the formal description method is awed, and
is less useful even as a non-executable speci�cation.

Formal description methods admit multiple implementation methods, and in the
case of very high-level compiler description methods, it is possible to provide implementa-
tions of di�erent execution paradigms. For example in FNC2, the same description can be
used to describe a batch compiler and an incremental compiler [54].

Special-purpose compiler description methods can be grafted onto an underlying
general-purpose programming language, or they can be full languages in their own right. In

2However, King and Launchbury's recent work in monads has allowed e�cient implementation of standard
graph algorithms [63].
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the former case, the implementation usually consists of a reduction to the underlying lan-
guage, leaving less room for special execution paradigms. As pointed out by Jourdan et al.

the latter case gives the implementor more power for high-level optimizations and multiple
execution paradigms [53].

On the other hand, it is di�cult to implement a powerful feature e�ciently. Often
a generally applicable implementation method for a feature will do poorly in cases where
little of the power of the feature is exploited. This problem is a common one facing all
implementors of higher-level languages. A solution can often be found through more so-
phisticated analysis that determines when a specialized and e�cient mechanism can apply.
A designer of a compiler description method is challenged to provide a formalism that is
not only easier to use to write compilers, but also (almost) as e�cient as hand-coding. The
requirement of e�ciency becomes stronger if the special purpose formalism does not provide
much help to the compiler writer in expressive power.

The formalisms that have received the most attention are those based on attribute
grammars [64]. The remainder of this subsection describes some representative systems
built on other formalisms. Section 1.3.4 discusses attribute grammars and variations.

OPTRAN

A description in Lipps et al's OPTRAN system [67] consists of two parts, an
attribute grammar de�ned over abstract syntax trees and a set of rewrite rules. Attribute
grammars are discussed in Section 1.3.4. An example of an OPTRAN rewrite rule is one
to replace the addition of two integer constants by their sum:

transform

<addop,<intconst\1>,<intconst\2>>

into

<intconst>

apply

trafoaddop(sscanattr of intconst\1,

sscanattr of intconst\2,

sscanattr of intconst);

This fragment rewrites any node denoting the addition of two constants by a single constant
node. It also computes the sscanattr of the new node (that is, the constant's value) by
calling a procedure trafoaddop that takes two input parameters and one output parameter.

The OPTRAN compiler generates Pascal code, which is linked with hand-written
code implementing such procedures as trafoaddop. In essence then, OPTRAN serves
as a powerful extension to the Pascal language. Unfortunately some of the features of
Pascal (such as modi�able global variables) interfered with features in OPTRAN (such as
incremental re-evaluation of attributes). E�orts were then directed toward a functional
model of transformations as exempli�ed by Trafola (below) [102].

A later system based on a similar synthesis of attribution and transformation is
Farnum's DORA system [30]. DORA uses a more powerful attribution model including
pattern-matching [31] and �xpoint computations [29].
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Trafola

Heckmann's Trafola [45] is a functional language with particular emphasis on tree
pattern matching and transformations. In its foundations, it is related to pure functional
languages such as Miranda [94], and thus includes the useful factoring tools of that tradition,
in particular lazy polymorphic functions. More importantly, Trafola includes a powerful pat-
tern matching system, including insert patterns (notated using ^), in which any descendant
of a node can be identi�ed in a single pattern. For example, a simple partial evaluator for
arithmetic expressions can be written as follows:

Repeat

{P ^ ('add['integer X,'integer Y]) => P ^ ('integer(X+Y))

#P ^ ('add[X, integer 0]) => P ^ X

#P ^ ('add[integer 0, X]) => P ^ X

#P ^ ('mul['integer X,'integer Y]) => P ^ ('integer(X*Y))

#P ^ ('mul[X, integer 0]) => P ^ ('integer 0)

#P ^ ('mul[integer 0, X]) => P ^ ('integer 0)

# other => other }

The Repeat function takes a tree transformation as its argument and returns a new trans-
formation. This new transformation applies the original transformation repeatedly to a tree
until no change is made. The transformation in this case is an anonymous function whose
body is inside the braces, {}. It takes a tree and returns a possibly new tree. The body
consists of a sequence of rewrite rules written pattern => result; the �rst matching pattern is
chosen. In this example, most of the rules are of the form P ^ Q => P ^ Q0. Such rewrite
rules apply the rewrite rule Q => Q0 to every subtree in the tree being transformed. The
�rst rewrite rule does the same task as the rule in the OPTRAN example. Chapter 3
discusses the insert operator ^ in greater detail.

Such powerful language features need sophisticated implementations in order to
avoid being too costly. Trafola includes an optional type checker (a type inferencer in the
style of ML) and as described by Ferdinand [37] uses bottom-up linear time tree parsing in
order to make pattern matching more e�cient. (See the PROSPECTRA System report for
a more complete description of the implementation [3]).

CENTAUR/Typol

The CENTAUR system is a multi-lingual integrated software development envi-
ronment [19]. As part of that work, researchers have developed a system for type-checking
programs that uses the powerful notation of Natural Semantics [55] based on operational
semantics. Operational semantics is widely used in describing and proving properties of
programming languages; see, for example, the de�nition of Standard ML [72].

The description language, Typol [24], is related to Prolog in that it is a pure
logic language and so does not have the concept of object identity. Typol supports pattern
matching (through uni�cation) and conditional rule application. Like Prolog, it has a
general form of subroutines and a polymorphic type system, but unlike Prolog, it has a
static type system. Typol is a powerful language and thus a general implementation can be
ine�cient. Various subsets have been de�ned that can be implemented more e�ciently [5, 6].
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The following fragment speci�es the run-time semantics of \while" statements in
a simple imperative language:

s ` EXP : true s ` STMTS : s1 s1 ` while EXP do STMTS end : s2
s ` while EXP do STMTS end : s2

(r1)

s ` EXP : false

s ` while EXP do STMTS end : s
(r2)

Rules of the form this that
something

are read \if this and that then something". The �rst rule

speci�es that if in state s, the expression evaluates to true and if the new state after
executing the body is s1 and if executing the whole loop again with this new state yields
state s2, then the result of executing the loop starting in state s is s2. The second rule
is simpler; it states that if the expression evaluates to false, then the state is not changed
after the loop executes.

Back End Generators

A number of generators for the �nal machine-speci�c part of a compiler have been
developed including burg [80], iburg [38], Emmelmann et al's BEG [27, 28] and Bradlee et
al's Marion [15, 16]. From a description of the machine, these systems generate instruction
selection routines that �nd the cheapest instruction sequence. Some (notably Marion) take
into account pipelines and other processor resource issues thus allowing the generator to
handle more of the issues that must be addressed by a back end. As lexer and parser
generators enable easy speci�cation and modi�cation of lexers and parsers, so these tools
greatly simplify the task of creating and maintaining back ends for compilers.

1.3.4 Attribute Grammars

Attribute grammars (�rst described by Knuth [64]) are a formalism for associating
values with instances of productions in a context free grammar. Attribute grammars are
useful for specifying front ends for compilers, or indeed entire compilers (see, for example,
Farrow's production compiler for Pascal [32]). Attribute grammars have a set of attribution
de�nitions associated with each production in a context-free grammar. These de�nitions
show how to compute each attribute instance, that is, values associated with tree nodes
in a (possibly abstract) parse tree of a program. For example, the attribute de�nitions
associated with a tree node representing a unary negated expression might be expressed in
the following way:

expr0 ! "-" expr1

expr0.type :=

if expr1.type = INT_TYPE then

INT_TYPE

else if expr1.type = REAL_TYPE then

REAL_TYPE

else

ERROR_TYPE;
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expr0.code :=

if expr1.type = INT_TYPE then

expr1.code || INEG

else if expr1.type = REAL_TYPE then

expr1.code || FNEG

else if expr1.type == ERROR_TYPE then

expr1.code

else

ERROR["illegal operand to negation"];

The production in this fragment is expr0 ! "-" expr1. An instance of this production is
a parse tree of the following shape:

expr0

.&

"-" expr1

4

In the scope of this production are two attribute de�nitions.3 The �rst de�nes expr0.type,
that is, the type attribute of the parent node expr0. The de�nition speci�es the type of
the parent node as the same as that of child node expr1, as long as the type is INT_TYPE
or REAL_TYPE. Otherwise the type of the parent is computed as ERROR_TYPE. The second
de�nition de�nes expr0.code, the code to be generated for the parent. Notice that this
de�nition uses both attributes of the child.

Attribute grammars have a number of strengths. The �rst strength is that (syn-
tactic) case analysis for attributes of a nonterminal is already exposed. There is a close
connection between the productions of the context-free grammar and the attribution de�-
nitions. This case analysis provides for a degree of (enforced) factoring.

Another strength is that evaluation order is implicit|the tool that implements
an attribute grammar determines an evaluation order so that an attribute is scheduled
for evaluation before any attribute that depends on its value. Because evaluation order
is implicit, side-e�ects are not permitted in (formal) attribute grammars. Consequently, a
single description can be used to specify both a batch compiler and an incremental compiler.4

One of the limitations of attribute grammars is a result of their simplicity|all
attributes are de�ned using local dependencies. In the example, only the nodes expr0 and
expr1 were visible to the de�nitions. It would not be possible to write a de�nition that
uses a child of expr1. In this case, such a rule would be of dubious utility. However, it is
natural to use information about a declaration of a variable at some use site of that variable.
In a parse tree, however, the declarations and uses rarely have a parent-child relationship.
In order to establish a dependency between two nodes widely separated in a tree, it is
necessary to transfer needed values through all the intermediate nodes along the path from
one to the other in the tree. The need to specify all the intermediate copy rules decreases

3This example uses an Algol-like syntax for the attribute de�nitions.
4Getting an e�cient incremental language analysis, however, requires more than simply incrementalizing

an existing description.
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the usefulness of classical attribute grammars because it makes a formal description more
complex to read and write. Moreover an attribute grammar may even be more complex
than a compiler written in a general purpose programming language.

Another limitation is that all the attribute de�nitions associated with a given
production are speci�ed in one place. In order to understand the contribution a single
attribute makes in a compiler, say one used for code generation, it may be necessary to
scan the entire description to �nd all the de�nitions for that attribute, and then again to
see how its values are used.

Classical attribute grammars have no support for pattern-matching, beyond single
productions. Pattern-matching must be done \by hand" using attributes. Lack of support
for pattern-matching not only makes descriptions more complex, but also leads to dangerous
redundancy (as explained in Chapter 3).

Practical tools that implement attribute grammar-based formalisms often tackle
these problems by providing extensions to the attribute grammar formalism. As a result,
attribute grammars are not standardized or used as an information exchange formalism as
context free grammars are used. Classical attribute grammars are too clumsy and exten-
sions are too closely identi�ed with speci�c tools. There has been some e�ort to describe
extensions independent of any tool and to show a strong theoretical foundation, for exam-
ple descriptional composition, �xpoint computations, higher order attributes, pattern-based
attribution, conditional attribution, and remote attribution. One can hope that these ex-
tensions (to be more fully discussed in this dissertation) will be more widely accepted, thus
permitting attribute grammars to be more used for explanatory description, in a similar
manner to context-free grammars.

One of the earliest attribute grammar systems to be used was Kasten et al's
GAG [58], an implementation of classical attribute grammars. The largest system reported
built with GAG was an 400 page description for the analysis of Ada [95]. GAG's successor,
LIGA [57], supports the use of (externally de�ned) side-e�ecting data structures protected
by control attributes that order the requests on such data structures. Such descriptions
cannot be easily incrementalized. LIGA provides assistance for remote access of nodes. Any
de�nition may refer to an ancestor by type, or to all descendants of a given type. LIGA
also has \chain" attributes where each element in a list adds something to an accumulating
result. These extensions allow a description to be more concise.

Another early system was Farrow's Linguist [34], which has been used to describe
a production Pascal compiler as well as a VHDL compiler [32]. It has been extended with
a variant of higher-order attribute grammars to handle the creation of derived structure
which can then be traversed and attributed [36]. Farrow has also developed a prototype
that supports building of circular structures (such as are used in symbol tables) [35].

Particularly relevant to this dissertation is the MARVIN [40] system. It was de-
veloped as an implementation platform for attribute-coupled grammars [41] and their de-
scriptional composition. MARVIN uni�es all data structures (the tree itself and auxiliary
structures such as environments) under the single concept of sorted algebras. MARVIN is
built as an extension to Modula2 [103] and so speci�cations in MARVIN are a hybrid of
declarative and imperative programming; this feature hinders incremental implementation.
Moreover, the descriptional composition method used can only handle the very simplest
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forms of transformations|those that yield a basically isomorphic structure; there is no
support for choosing between two output possibilities.

The FNC2 [52, 54] compiler description system can generate three types of compil-
ers from a single description|batch evaluators, parallelized batch evaluators and incremen-
tal evaluators. Attribute grammars for FNC2 are written in OLGA [53]. As with LIGA,
there are mechanisms for automatically generating copy rules and for referring to attributes
of an ancestor (though not of descendants). OLGA has a limited form of pattern matching
that can be used to provide default values for attributes. OLGA has a module system that
allows tools to be written in several distinct parts, thus encouraging reuse and also aid-
ing readability. Modules can be separately compiled. FNC2 does not currently implement
descriptional composition.

Attribute grammars are good formalisms because they use the syntax to determine
the dependencies between attributes, and by having an implicit evaluation order, they
permit a wide variety of batch and incremental evaluations. Unfortunately, as currently
implemented, there is little or no support for pattern matching or descriptional composition.
For more information on attribute grammars and implementations, the interested reader
should see Deransart and Jourdan's review [23].

1.4 The Thesis

In order to assist the writing of factored reusable compiler descriptions, we want
a description method that has support for both large scale and small scale factoring, with
implementation methods that use combining techniques for e�cient implementation. It also
is a great advantage if the same speci�cation can be used for both incremental and batch
evaluation.

None of the reviewed systems accomplish all these things. In particular they lack
the ability to do large-scale descriptional composition. Moreover, many of the simplest and
cleanest systems, even if they had the necessary power, do not provide enough expressive-
ness, making them fundamentally awed from a user's point of view. The simpler systems
often do not have enough support for factoring methods such as pattern-matching. The
result is often dangerous redundancy.

It is our thesis that it is possible to support powerful factoring techniques together
with combining methods such as descriptional composition in an expressive compiler de-
scription language. This dissertation presents a compiler description language based on
attribute grammars with numerous powerful extensions. This language is designed on the
principle that factoring should be as unlimited as possible. From a description factored
by concept, it is a straightforward task to generate a description factored by attribute or
node type; the reverse transformation is completely infeasible. As a result, the proposed
description language contains many (useful) features. It is meant to be used; in fact, the
compiler for the description language is written in the language (see Appendix C).
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1.5 Summary

In order to achieve more reuse both between di�erent compilers and between di�er-
ent versions of the same compiler, compiler descriptions should be written in many atomic
reusable stages, each performing a single conceptual task. In other words, compilers, like
all software, should be written in a factored style. Considerations of e�ciency, however,
discourage programmers from using factoring, especially as factoring may require more rig-
orous design. Current compiler description methods lack the ability to combine factored
descriptions to avoid the costs that accompany the use of multiple intermediate forms.

Therefore, we need a compiler description language that not only supports fac-
toring in a variety of ways, but also permits e�cient implementation through the use of
combining techniques. This dissertation provides such a language (APS) and descriptional
composition of compiler components written in APS. Chapter 2 introduces the proposed
compiler description language, APS, informally and shows how to express classical attribute
grammars. The following chapters describe in turn the major features of the language:
pattern matching, logical sequences, remote attribution, circular attribution and modular-
ization. Each chapter shows how these methods increase factoring potential, how they are
expressed in APS and what combination techniques are used in implementation. Chap-
ter 9 describes the operation of descriptional composition in the APS compiler. Chapter 10
concludes the dissertation with a report of experiences and some ideas for further work.
Appendix A contains a summary of APS. Appendix B contains a compiler for a simple
language, Oberon2, and Appendix C provides a front-end for APS described in terms of
itself. The Oberon2 compiler is used as a running example for describing the features of
APS.
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Chapter 2

An Introduction to the APS

Compiler Descriptional Language

This chapter introduces APS, a compiler description language. APS extends the
attribute grammar formalism with pattern matching, sequences, higher-order features and
modules. These extensions enable numerous factoring methods. Section 2.1 introduces
the basic concepts of APS, trees and attributes. Section 2.2 explains some of the minor
extensions. The chapter closes with a discussion of the basic implementation model used by
the current APS compiler. The major extensions follow in their own chapters. A complete
summary of APS in given in Appendix A.

The examples used in this chapter come from an Oberon2 [73] compiler presented
in Appendix B. Oberon2 is the latest in the line of Niklaus Wirth's languages in the
Algol family. Some of the other well-known languages are Pascal, Modula2 and Oberon.
Oberon2 is a small language, but not a toy language. It contains modules, record subtyping,
overridable methods, open array types, garbage collection, sets and �ve numeric types.
Oberon2 is thus complex enough to be used to evaluate a compiler description language,
yet small enough to be easily understood by the reader.

2.1 Basics

The APS description language is a programming language designed for operating
on forests of trees. In a tree, each node other than the root has a parent node. A root does
not have a parent. A subtree rooted at a node is the portion of a tree \under" that node. A
forest consists of an ordered collection of trees and thus has multiple root nodes. Although
APS primarily supports trees, one can also de�ne directed-acyclic graphs (DAGs) as well
as general graphs. In DAGs, nodes can be shared between parents, but no node can be its
own ancestor. There are no such restrictions for general graphs. This chapter, however,
only describes the attribution of trees.

APS provides the ability to de�ne attributes|typed values that are associated
with particular nodes. The programmer speci�es the values by expressing an attribute as
a function of other values, including other attributes. The APS compiler schedules the
evaluation of the attributes so that no attribute is used before it is de�ned. Automatic
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scheduling is one of the main bene�ts of attribute-grammar based systems such as APS.

2.1.1 Tree Languages

In APS, trees are typed, that is, they obey certain structural rules. These restric-
tions are given in an APS module that describes a tree language. Figure 2.1 gives an example
of such a module. A tree language is de�ned by a set of phyla (singular: phylum), and a set
of constructors. A phylum is a type to which subtrees may belong. The phyla are disjoint;
no subtree belongs to more than one phylum. Each constructor is associated with exactly
one phylum, although multiple constructors may share the same phylum. A constructor
is a function that creates a tree node and labels it with the name of the constructor. By
de�nition, the subtree rooted at this node belongs to the phylum of the constructor. By
extension, we say a node belongs to a phylum if the subtree rooted at that node belongs to
the phylum.

Some tree languages allow all subtrees in all contexts; in this case, there is one
phylum for all constructors. More commonly (as in the example) there is one phylum for
each nonterminal in an abstract syntax.

A constructor has zero or more formal parameters. A parameter whose type is a
phylum takes a subtree, the root of which becomes a child of the node being created. Other
parameters take values to be stored in the node. Following Ganzinger and Giegerich [39],
we call these two kinds of parameters syntactic parameters and semantic parameters re-
spectively. The distinction is important because the structure of the tree is determined by
the syntactic parameters. The semantic parameters merely describe what values are stored
in the nodes at their creation. Technically, these values are \attributes," but that term is
used here only for values added after creation.

The set of trees in a tree language are those that can be built by repeated ap-
plication of the constructors. There must always be at least one constructor that has no
syntactic parameters. Otherwise, tree construction could never start. Constructors that
only have semantic parameters are called leaf constructors and they create leaf nodes.

Phyla play the role of nonterminals in a context-free grammar in the sense that
phyla denote sets of subtrees, while nonterminals denote sets of substrings. Constructors
play the role of grammar productions.

In Figure 2.1, we have (part of) an APS module that describes an abstract syntax
for Oberon2. The full module is given in Appendix B.1. The tree language of this portion has
12 phyla (Program, Block, Declaration, etc) and 19 constructors (program, module_decl,
block, etc). The last three phyla (Modules, Declarations and Statements) are sequence
phyla. A subtree of a sequence phylum is a list of subtrees; each subtree is of the phylum
named inside the brackets ([ ]). For example, subtrees of phylum Modules are lists of
subtrees of phylum Declaration. Sequence phyla are discussed fully in Chapter 4.

Figures 2.2, 2.3 and 2.4 give an example of how an Oberon2 module is repre-
sented in an APS tree. The function make_symbol returns a Symbol for a string and
integer_constant returns a Oberon2Constant for an integer value. Sequences are con-
structed with the {...} notation.



26

module OBERON2_TREE[] begin

phylum Program;

phylum Block;

phylum Declaration;

phylum Type;

phylum Statement;

phylum Expression;

phylum Operator;

phylum IdentDef;

phylum Use;

phylum Modules:=SEQUENCE[Declaration];

phylum Declarations:=SEQUENCE[Declaration];

phylum Statements:=SEQUENCE[Statement];

...

constructor program(modules : Modules) : Program;

constructor module_decl(name : IdentDef; body : Block) : Declaration;

constructor block(decls : Declarations; stmts : Statements) : Block;

constructor var_decl(name : IdentDef; shape : Type) : Declaration;

...

constructor fixed_array_type(length : Expression; element_type : Type)

: Type;

constructor open_array_type(element_type : Type) : Type;

...

constructor boolean_type() : Type;

constructor integer_type() : Type;

constructor assign_stmt(lhs : Expression; rhs : Expression) : Statement;

constructor named_expr(using : Use) : Expression;

constructor unop(op : Operator; arg : Expression) : Expression;

constructor binop(op : Operator; arg1, arg2 : Expression) : Expression;

constructor is_test(value : Expression; test_type : Type) : Expression;

constructor aref(array : Expression; index : Expression) : Expression;

constructor constant_expression(value : Constant) : Expression;

...

constructor plus() : Operator;

constructor minus() : Operator;

...

constructor identifier(name : Symbol) : IdentDef; NB: simpli�ed

constructor use_name(name : Symbol) : Use;

end;

Figure 2.1: An Abstract Syntax for Oberon2 (portions elided)
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MODULE Simple;

VAR x : Integer;

VAR y : Integer;

BEGIN

x := 12;

y := x + x;

END.

Figure 2.2: A simple Oberon2 module

program(

{ module_decl(

identifier(make_symbol("Simple")),

block(

{ var_decl(

identifier(make_symbol("x")),

integer_type()),

var_decl(

identifier(make_symbol("y")),

integer_type()) },

{ assign_stmt(

named_expr(use_name(make_symbol("x"))),

constant_expression(integer_constant(12))),

assign_stmt(

named_expr(use_name(make_symbol("y"))),

binop(plus(),

named_expr(use_name(make_symbol("x"))),

named_expr(use_name(make_symbol("x"))))) })) })

Figure 2.3: An APS expression to make a tree for Figure 2.2
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program

module_decl

identifier block

var_decl

identifier integer_type
x

var_decl

identifier integer_type
y

assign_stmt

named_expr binop

plususe_name named_expr named_expr

use_name use_name

y

x x

assign_stmt

named_expr constant_expr

use_name
x

12

Simple

Figure 2.4: The result of evaluating the APS expression in Figure 2.3

2.1.2 Attributes

Attributes must be declared in APS. An attribute declaration names a phylum;
each node of this phylum will be associated with an instance of this attribute. Attributes
must have a declared type. Additionally a default value may be given. If no other de�nition
of the attribute takes e�ect, the default value (if any) will be used. If there is no default,
the attribute is unde�ned.

One may think of attribute declarations as adding a slot to every node of the
phylum. If a names an attribute, and n is some expression that computes a node then n.a

refers to the a slot of the node computed from n. Once a value has been determined for
one of these slots, it does not change. Moreover the APS compiler ensures that an attribute
will be used only after its value is determined.

For example, the following attribute declaration comes from the module that com-
putes the types for expressions (Appendix B.3.3):

attribute Expression.expr_type : remote Type := any;

This fragment declares an attribute named expr_type. An instance of this attribute (having
a value that is a remote1 reference to a Type node) will be associated with each node of
phylum Expression. The default value of each instance is any. This value (declared
in another module) is used to indicate that the type could not be computed. The error
reporting routines treat any specially to avoid cascading error messages.

Attribute de�nitions specify the values of attributes in particular contexts and
under certain conditions. The context of an attribute de�nition is given by a pattern. The
syntax used is match pattern begin de�nitions end. The following fragment computes the
expr_type of Oberon2 IS expressions (type tests):

1See Chapter 5 for an explanation of remote types.
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match ?e=is_test(...) begin

e.expr_type := boolean;

end;

The pattern matches any node labeled with the is_test constructor. The ... in the
pattern means that we don't care what the children (if any) are. Pattern variables are
de�ned in a pattern by preceding their names with a question mark (?). In this fragment,
e is the only pattern variable. The equal sign (=) signi�es that e is bound to whatever is
matched by is_test(...). There is only one de�nition in the body of this pattern match.
It de�nes expr_type of an is_test node to be boolean (declared elsewhere).

An attribute may also be de�ned using the values of other attributes. For example:

match ?e=unop(?,?arg) begin

e.expr_type := arg.expr_type; -- for minus & not

end;

The pattern binds e to a node labeled by unop and binds arg to a child of this node. The
subtree rooted at this child was the second argument passed to the constructor when the
node was created. The �rst argument is ignored; the ? notation is used as a placeholder.
For the two unary operators in Oberon2 (~ and -) the result type is the same as the
argument type.2 This example takes advantage of this fact by giving a single de�nition for
both operators. As already mentioned, the APS compiler ensures that attributes are only
used after they are de�ned. There is no danger that the de�nition of e.expr_type could
be evaluated before arg's expr_type de�nition. The APS compiler detects and complains
about circular dependencies. One can think of the attribute de�nitions as being a system
of constraints that are satis�ed simultaneously.

Attribute de�nitions may also be conditional:

match ?e=aref(?array,?) begin

case array.expr_type begin

match array_type(?et) begin

e.expr_type := et.base_type;

end;

...

end;

end;

The pattern binds e to an aref node and array to the �rst subtree child. An aref node is
used for array references in Oberon2, for example a[i]. The body of the pattern match then
examines the expr_type of the node bound to array. APS has a case statement for this
purpose. The body of the case statement includes an example of nested pattern matching.
The type is only interesting if it is an array type. Otherwise the expression is illegal, and
since no other attribution clause applies to array references, the default (any) will be used.

2Of course, if the argument type were illegal, this fragment would not detect the error. For example,

if the expression was -"hello", it would blindly compute the type as string. Type checking is done in a
di�erent module.
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In the case it is indeed an array type, this fragment de�nes the expr_type of the aref node.
(Ignore the base_type attribute for now; it merely canonicalizes a type.) This de�nition
is an example of conditional attribution; the attribute de�nition is only applicable under
certain conditions. Otherwise, some other de�nition must be used. Chapter 3 discusses the
interaction between pattern matching and conditional attribution.

2.2 Simple Extensions to Classical Attribute Grammars

In the following chapters, we describe some far-reaching extensions to the basics
outlined here, but in this section we describe a few extensions that are both easier to explain
and common to many attribute grammar systems.

2.2.1 Conditionals

Attribute grammar systems typically permit conditionals on the right-hand side
of attribute equations. However, if a number of attributes depend on the same condition,
in rare but signi�cant cases, a static analysis that does not \understand" conditionals
will discover a (spurious) attribute circularity. Therefore, APS recognizes conditionals as a
fundamental construct. We have shown that standard static analyses of attribute grammars
can carry over to conditional attribute grammars [12].

Conditionals in APS are expressed using an if `statement', for example:3

match ?md=module_decl(?,block({...,import(?,?u=use_name(?name)),...},?))

begin

mref : remote Declaration :=

find_local_decl(name,module_scope);

if mref == nil then

u.use_decl := nil;

u.no_decl_reason := "Undeclared module";

elsif mref == md then

-- Section 11: "A module must not import itself"

u.use_decl := nil;

u.no_decl_reason := "Illegal self-import";

elsif not check_import(md,{},mref) then

-- Section 11: "...cyclic import of modules is illegal"

u.use_decl := nil;

u.no_decl_reason := "Illegal indirect self-import";

else

u.use_decl := mref;

endif;

end;

This fragment handles Oberon2 import clauses. It uses some of the advanced features
explained in Chapters 3, 4 and 5. There are four di�erence cases for the compiler to handle,

3The Oberon2 compiler does not require conditional analysis to avoid spurious circularities.
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each of which is handled by one of the four conditional clauses in the fragment. Each of the
four clauses de�nes the attribute using.use_decl and all but the last de�ne the attribute
using.no_decl_reason. The second attribute is a string used as an error message when
no (legal) module can be found for the import.

It is not necessary that all the de�nitions in the branch be evaluated at the same
time. The only restriction is that none can be evaluated before the value of the condition
is known.

2.2.2 Global Variables

A global variable is a named value computed using other global variables, functions
or constructors. Global variables provide the ability to factor out a common value, or \magic
number", and give it a name. From the Oberon2 compiler we have the following fragment:

module OBERON2_TYPE[T :: OBERON_TREE[]] extends T

begin

type Oberon2Type = appropriate type

-- some preconstructed types

boolean : Oberon2Type := boolean_type();

char : Oberon2Type := char_type();

shortint : Oberon2Type := shortint_type();

integer : Oberon2Type := integer_type();

longint : Oberon2Type := longint_type();

real : Oberon2Type := real_type();

longreal : Oberon2Type := longreal_type();

any : Oberon2Type := any_type(); -- used for an erroneous expression

end;

This module declares a type (Oberon2Type) and several global variables (boolean, char,
etc). Section 2.1.2 gave examples of de�ning the expr_type attribute for expressions that
used these declarations. Global variables must be assigned a value at their declaration site.
A global variable may be used anywhere in its scope, that is in the module in which it is
declared.

2.2.3 Local Variables

Rather than being global to a module, a variable may be declared local to any
attribution clause:

match ?b=block(?decls,?stmts) begin

inner : Scope := nested_contour(b.scope);

for decl in decls begin

decl.scope := inner;

end;

for stmt in stmts begin

stmt.scope := inner;
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end;

b.saved_scope := inner;

end;

This fragment is an attribution clause from the module that creates a symbol table for an
Oberon2 program. The full text can be found in Appendix B.3.2. The attribution clause
states that a new nested contour is declared for every block in an Oberon2 program. This
new contour is saved in a local variable inner. A new contour de�nes a new scope. Both
the declarations and the statements of the block have this scope. Symbol table records have
object identity; every time nested_contour is called, it returns a new instance. Therefore,
this fragment would have a di�erent meaning if the de�nition of inner were substituted for
all its uses:

match ?b=block(?decls,?stmts) begin

decls.scope := ScopeModule$nested_contour(b.scope);

stmts.scope := ScopeModule$nested_contour(b.scope); -- Wrong!

end;

This fragment has the declarations and statements in di�erent scopes. Therefore, local
variables are important not only for factoring, but also to store shared objects.

In attribute grammar terminology, local variables are known as local attributes. We
do not use this term, instead reserving the word \attribute" for values associated with nodes.
The term \variable" is meant in the mathematical sense of an unchanging possibly unknown
value, not in the sense of a store location with a changeable location as in imperative
languages. In APS, a variable refers to an entity whose value may be determined by :=

de�nitions (also called \assignments"). If a names an attribute, and n is some expression
that computes a node then n.a is a variable. In attribute grammar terminology n.a is an
attribute occurrence. The term \variable" is used in APS in order to separate the concept
of a de�nable value from the concept of associating values with nodes.

2.2.4 Functions

Each attribute de�nition computes its values as a function of (possibly zero) other
values. If the programmer could not de�ne new functions, this paradigm would be very
restrictive. Instead, as with any attribute grammar system, APS has function declarations.
A simple function may be speci�ed with an expression:

function subset(x,y : Integer) : Boolean

:= logandc2(x,y) = 0;

This function (from Appendix B.1.1) determines if the �rst integer (interpreted as a bitset)
is a subset of the second. This function uses the identity x � y () x \ y = ;.

A more complicated function may be speci�ed using an attribution clause. In the
following example, the result of the function is given as a local variable (named by default
result):

function make_range(x,y : Constant) : Constants begin
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case Constants${x,y} begin

match {some_integer_constant(?v1),

some_integer_constant(?v2)} begin

result := {shortint_constant(i) for i : Integer in v1..v2};

end;

else

result := {nil};

end;

end;

This function uses some of the features explained in Chapters 3 and 4. The parameters are
placed in a list and then pattern matching is used to determine if each parameter is some
form of an integer constant. If both of the parameters are integer constants, it creates the
set of integer constants in the range. Otherwise it returns the set with nil in it.

2.2.5 Polymorphism

As mentioned in Chapter 1, polymorphism is an important factoring technique,
especially in a typed language such as APS. APS uses the technique of bounded polymor-

phism, where any polymorphic entity is de�ned for types that �t certain signatures (sets
of features, such as operations, that are available for the type). For example, types with
the NUMERIC[] signature have a multiplication operation available, and so one could write
a polymorphic function square that squares its argument:

[T :: NUMERIC[]] function square(x : T) : T := x * x;

The notation [T :: NUMERIC[]] declares a scope (including just the single function def-
inition) in which T is a valid type. The function square is implicitly exported to the
surrounding scope. Then at any point it is used, type inference must be able to determine
the value of the implicit type parameter. In fact the in�x multiplication operator * is de-
�ned in a very similar way. At its use in the preceding function de�nition, the value of its
implicit type parameter is determined to be T, a valid type of the NUMERIC[] signature.

The only way for a type to satisfy a signature is for the module that creates it
to assign it that signature, either explicitly or implicitly through the module's \extension"
(see Chapter 8). The ability to extend types with new signatures makes this restriction less
onerous.

Sometimes what is desired is not fully general polymorphism, but merely overload-
ing: the ability to use the same name for a �nite number of di�erent types. APS provides
�nite polymorphism is which a type variable ranges over a given set of types. For example,
the following fragment from the Oberon2 compiler symbol table module (Appendix B.3.2)
has an example of a �nite signature and a �nitely polymorphic attribute:

signature SCOPABLE := {Declaration,Block,Header,Receiver,

Statement,Expression,Use,Type,

Case,CaseLabel,Element},

var PHYLUM[];
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-- The scope for inserting declarations

[phylum T :: SCOPABLE] attribute T.scope : Scope := root_scope;

In this example, the scope attribute is declared for each of the phyla named in the
SCOPABLE signature. This signature ranges over a number of phyla. The additional re-
striction var PHYLUM[] ensures that a type satisfying this signature can be decorated with
attributes. Polymorphic attribute declarations must only be �nitely polymorphic. Other-
wise the system would not know how many di�erent versions of the attribute could exist.

Finitely polymorphic attribution clauses are useful for factoring. For example, the
following fragment from later in the same module copies the scope to the children of any
node as long as both parent and child types belong to SCOPABLE:

-- otherwise we just copy scope to the child

[phylum P :: SCOPABLE;

phylum C :: SCOPABLE] begin

match ?parent:P=parent(?child:C) begin

child.scope := parent.scope;

end;

end;

Here parent is a special polymorphic constructor that can match any node of the appro-
priate type and bind one of the children of that node. By limiting the types P and C to
phyla for which the scope attribute is de�ned, we ensure that the attribute de�nition in
the block are properly typed.

2.3 Implementation

Attribute grammars permit sophisticated analysis and corresponding implementa-
tion techniques [23], and these techniques are directly transferable to APS. However, e�cient
static scheduling may require the compiler description writer to introduce contortions in the
speci�cation leading to dangerous redundancy. For example, even with a ground-breaking
\�ber" analysis, Maddox's Modula2 description needs a separate syntax for constant ex-
pressions as well as the normal expression syntax in order to avoid static circularities [70].
Since the main goal of APS is to permit highly factored descriptions, any APS compiler
would have to permit some attributes to be dynamically scheduled, despite such scheduling
usually being less e�cient. For simplicity therefore, the current APS compiler prototype
uses dynamic scheduling throughout.

2.3.1 Variable Instances

The instantiation of a module creates instances of its global variables. The creation
or prior existence of a tree node implies the existence of the corresponding attribute variable
instances. The activation of an attribution clause with a given set of bindings brings into
existence any local variable instances. Demand evaluation is used to compute the value
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for all these variable instances . Notice that local variable instances can be created during
evaluation of other variable instances.

Global variable instances are created as soon as the module is instantiated. Each
instance is associated with a thunk for its (required) default value, a parameterless function
that when evaluated returns the value. Chapter 6 introduces a kind of global variable that
can be assigned in attribution clauses, but for the purposes of this chapter, the value of a
global variable instance is the same as its default value.

Once all the nodes of a phylum have been created, the attributes for that phylum
are instantiated. The attribute variable instances are not stored in the nodes but stored in
a vector indexed by a unique value stored in each node.

Then when the module is �nalized, all the top-level match clauses in the module are
activated for all nodes in the appropriate phyla. The activation of clauses may involve the
instantiation of local variables and activation of de�nitions. When a de�nition is activated,
a thunk to compute the right-hand side is placed on the worklist for that variable instance
on the left-hand side. The textual priority of the de�nition is stored with the thunk. No
instance evaluation is performed at this stage, only the activation of clauses and their
de�nitions. A conditional clause that requires attribute evaluation is delayed.

2.3.2 Guards

In the case of a conditional de�nition, it cannot be determined until after eval-
uation has begun whether the de�nition will be activated or not. As a result, a delayed
conditional clause is stored as a guard thunk on the worklists of variable instances that could
be potentially assigned in its scope (other than local variable instances local to the condi-
tional clause). Guard thunks are given higher priority than any de�nition thunk because
their evaluation may add a de�nition to the variable.

Sometimes, it is not possible to determine the a�ected variable instance without
further attribute evaluation. Since global and local variables are immediately known by
their names, this situation can only occur with attribute variables in which the node being
attributed is not known without evaluation. In this case, the guard thunk is put on the
worklist of the imprecise guard variable instance for the attribute. All attribute variable
instances are made to depend upon the imprecise guard for the attribute.

2.3.3 Demand Evaluation

All the variable instances created in a module instantiation are stored and then
evaluated using demand evaluation. When a variable instance's value is demanded, it is
marked as currently undergoing evaluation, and then its worklist is used to compute its
value. First, all the guard thunks are evaluated to ensure all its de�nitions are activated.
New guard thunks may be added while evaluating a guard thunk. Evaluation continues until
all guards have been evaluated. Then the de�nitions are sorted and the one with highest
priority (earliest textual position) is chosen and evaluated to yield the instance's value.
This value is stored in the variable instance, which is then marked as having completed
evaluation. Then the value is used in the place it was demanded.
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During evaluation of either kind of thunk, further variable instances may them-
selves be demanded. If a variable instance that is marked as currently undergoing evaluation
is demanded, a circular dependency has been exposed and the runtime system terminates
evaluation with a diagnostic. The possibility of such a situation shows one major disadvan-
tage of not using static analysis: the lack of circular dependencies cannot be ensured.

2.4 Looking Ahead

The features described in this chapter are su�cient to express classical attribute
grammars in APS. Attribute grammars are useful in their own right, but as pointed out
in Chapter 1, they have a number of de�ciencies when used as compiler descriptions. The
following chapters describe the major extensions in APS that address the problems.
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Chapter 3

Pattern Matching

Pattern matching is one of the most important tools for factoring a formal com-
piler description. In classical attribute grammars, all factoring must be done through the
case analysis provided by the abstract syntax. Rules are given for each production in the
grammar. However, sometimes a concept needs a �ner analysis. Some tasks need be done
only for some instances of a production, such as when one of the subtrees has a particular
shape. In this case, the attribute equations expressing this concept would be guarded by a
condition that tests the shape.

Sometimes a concept needs a coarser analysis. Some concepts may apply generally
to a whole class of productions. Using classical attribute grammars, such concepts would
have to be expressed multiple times. This situation is often an instance of dangerous
redundancy.

Often a concept needs both coarser and �ner analysis than that provided by at-
tribute grammars. That is, the de�nitions apply to multiple productions, but only for a
special case of each. In this case, in a classical attribute grammar, the concept and its

condition would have to be expressed multiple times, almost certainly being dangerously
redundant. Pattern matching, on the other hand, can enable such concepts to be expressed
in a single place.

This chapter �rst describes pattern matching in general. Section 3.2 discusses
some of the issues that arise when pattern matching is added to an attribute grammar-like
system. Section 3.3 describes how pattern matching is expressed in APS, including how the
issues are addressed. Section 3.4 outlines a canonicalization that reduces pattern matching
to conditional attribute grammars. This transformation is used in the APS compiler prior
to descriptional composition.

3.1 Pattern Matching in Compilers

If a compiler is written in an imperative language with hand-written traversals
of the tree, it is straightforward to use the conditionals of the implementation language
to express a concept in one place. For example, to detect the incrementing of a variable
written as an assignment, i := i + 1, one might write code such as:
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if (stmt->operator == ASGN_STMT &&

stmt->child[0]->operator == ID &&

stmt->child[1]->operator == BINOP &&

stmt->child[1]->child[0] == PLUS &&

stmt->child[1]->child[1]->operator == ID &&

stmt->child[1]->child[1]->id = stmts->child[0]->id &&

stmt->child[1]->child[2]->operator == INTEGER &&

stmt->child[1]->child[2]->iconst == 1) {

/* handle an increment of a simple variable */

: : :;

}

Writing code like this can be tiresome and the code can also be tiresome to read. Pattern
matching is a technique that allows such code to be expressed more concisely:

if (match(stmt,"ASGN_STMT[ID[?x],BINOP[!PLUS,ID[?x],INTEGER[1]]]")) {

/* handle an increment of a simple variable */ (1)
: : :;

}

The pattern gives a speci�cation that the shape of the tree must have and the match
function returns a boolean saying whether the pattern matches the given (sub)tree. Being
in the form of a \picture," a pattern is often clearer than code that does the testing directly.
Pattern matching has been implemented in a variety of systems; general purpose languages
(for example, Prolog [20], ML [72] and Haskell [48]) and systems speci�cally tailored for
compiler description (Twig [1], Optran [67], Trafola [45], Dora [13, 29], BURS [78] and
burg [80]). In Prolog, pattern matching is realized in uni�cation.

3.1.1 Pattern Variable Binding

Patterns may specify variable bindings and value patterns. Variable bindings are
wild cards in the pattern. In the example, name is a pattern variable and ?name is used
to specify a variable binding. If a pattern-matching system is integrated into the language,
then the variable bindings would be available as program-variable bindings. In formula (1),
integration would mean that x would be a valid declared variable in the scope of the {...}
block. A value pattern contains an expression to be evaluated at run-time. Matching
with a value pattern only succeeds if the corresponding part of the tree is the same, in
some sense, as the value of the value pattern. In formula (1), value patterns are written
using !value. (Queinnec calls value patterns \eval" patterns [81]; Heckmann calls them
\importing variable" patterns [45].)

If some pattern variable occurs more than once (such as ?x in formula (1)) the
pattern is non-linear. The meaning of such a repetition is that the corresponding values in
the tree must be the same. In formula (1), the pattern only matches if the two identi�er
occurrences in the assignment statement are the same identi�er. If two values in the tree
are the same for the purposes of a non-linear pattern, but actually are distinguishable in
some sense, then it becomes an issue as to which of the values is chosen for the binding. For
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example, we could generalize the previous pattern to handle all cases where an increment is
performed, not only for plain variables but also for other assignable locations such as array
accesses or record �eld accesses:

if (match(stmt,"ASGN_STMT[?place,BINOP[!PLUS,?place,INTEGER[1]]]")) {

/* handle increment of "place" */

: : :;

}

The pattern matching system would presumably consider two subtrees to be the same if they
were structurally identical (for example, if both had the shape AREF[ID[x],INTEGER[3]]).
But the compiler might store annotations on nodes so it would make a di�erence whether
place was bound to the �rst child of the assignment node or to the second child of the
binary operation node. Non-linear patterns can be handled by treating each pattern variable
normally the �rst time it is encountered in the pattern, and all successive times treating it
as a value pattern. In e�ect, the pattern would be used as if it had been written with only
one binding, with subsequence occurrences being value patterns:

if (match(stmt,"ASGN_STMT[?place,BINOP[!PLUS,!place,INTEGER[1]]]")) {

/* handle increment of "place" */

: : :;

}

The pattern, of course, could have been written this way to begin with. Value patterns
therefore subsume non-linear patterns.

3.1.2 Conjunctive and Disjunctive Patterns

A conjunctive pattern has two subpatterns, and matches if both subpatterns match
the subtree at that position. One use of a conjunctive pattern is to use a pattern-variable
binding to give a name to the subtree and also have a subpattern match the subtree:

if (match(stmt,"ASGN_STMT[?place,?rhs&BINOP[!PLUS,!place,?expr]]")) {

/* handle increment of "place" by "expr"*/

: : :;

}

The pattern in this example matches an increment of a place expressed in an assignment
node. In this example, the two subpatterns of a conjunctive pattern are joined by an
ampersand (&). The pattern variable, rhs, is bound to the whole right-hand side expression
tree of the assignment statement (in this case, the binary operation \PLUS" applied to the
place and another expression), whereas expr is bound to a subtree of the right-hand side.

The logical counterpart to a conjunctive pattern is the disjunctive pattern, which
matches if either of the subpatterns match. In the following example, a disjunctive pattern
is expressed by separating the two subpatterns with |. Disjunctive patterns interact with
pattern variable binding to cause a number of semantic di�culties. A pattern can cause
problems if it attempts to bind variables inside the subpatterns of a disjunctive pattern:
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if (match(expr,"ID[?x] | AREF[ID[?x],?index]")) {

x is bound at this point.

Is index bound at this point?

}

This pattern matches either simple identi�ers or simple identi�ers with an array subscript.
The pattern variable x is bound in both subpatterns and thus it is reasonable to expect x
to be bound inside the {...} block. On the other hand, index is bound only in one choice
and so index might be bound or it might not. If variable named index is declared in an
outer scope, then a direct implementation of such patterns leads to the unsettling semantics
that this variable declaration sometimes is shadowed and sometimes not.

Another problem with disjunctive patterns is non-determinism. Say we have a
pattern to detect addition by zero:

if match(expr,"BINOP[!PLUS,?x,INTEGER[0]] | BINOP[!PLUS,INTEGER[0],?x]") {

/* replace "expr" by sub-expression "x" */

}

If the tree in question matches BINOP[!PLUS,INTEGER[0],INTEGER[0]] then either of the
choices in this example could match. In this case, the question is whether x is bound to the
�rst INTEGER[0] or to the second one.

Because of these di�culties, pattern matching systems with disjunctive patterns,
often forbid (or ignore) pattern variable bindings within the subpatterns (for example,
DORA) or require all choices to bind the same set of variables (Trafola for example).
Moreover, non-determinism is often handled by choosing only the \�rst" matching choice.
Prolog is an exception here as the language directly supports non-determinism. In Prolog,
if a pattern matches in multiple ways, each choice of bindings is used. If a choice leads to
a failure at some later point, the next choice is tried.

Negated patterns are a further logical extension. Pattern variable binding interacts
even worse with negated patterns. In systems with negated patterns, bindings inside a
negated pattern are not visible outside the pattern.

3.1.3 Variable-Depth Patterns

Despite having the power to specify conditions for multiple tree nodes, patterns
in many formalisms do not normally have the power to match an arbitrary subsection of a
tree. For example, in most pattern-matching systems, it is not possible to match a procedure
header node and a return statement node that is arbitrarily deep in the procedure body
in a single pattern. A few powerful pattern matching systems can handle such situations.
Trafola has a non-deterministic construct (the insert pattern) in which an arbitrarily deep
subtree may be matched:

P ^ Q

This pattern will match any tree. The pattern variable Q is bound to some subtree anywhere
within the tree being matched and P is bound to a tree with a \hole" where Q was. A tree
with a hole can be combined with a subtree to �ll the hole. The insert construct is useful
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for tasks such as our example of matching a procedure header and return statements, but
it does not provide a way to specify the shape of the intervening nodes.

Similar constructs are Farnum's \vertical iterators" [29] or Queinnec and Ge�roy's
\tree patterns" [82]. These constructs have two parts, a wrapper with a \hole" and a
termination pattern. A subtree matches a vertical iterator if it matches the termination or
matches the wrapper with the subtree at the \hole" recursively matching the whole iterator.
In essence, the wrapper is copied multiple times as needed. By having a wrapper, therefore,
a vertical iterator pattern speci�es the shape of all the intervening nodes, but having only
one wrapper makes it di�cult to allow di�erent types of intervening nodes. Queinnec's
system includes unrestricted disjunctive patterns and thus does not have this problem.

All three systems allow bindings in the terminator pattern. Farnum's vertical
iterators also allow bindings in the wrapper. A variable is bound to the list of all the
bindings in all the instances of the wrapper. Queinnec and Ge�roy's system handles non-
linear pattern matching; multiple instances of the same pattern variable are matched against
each other. Farnum's vertical iterators are made deterministic using the \maximal munch"
rule; the largest tree to match is chosen. The other systems are non-deterministic.

3.1.4 Semantic Conditions

A pattern cannot always express all the conditions under which some compilation
task applies. Often it is necessary to have additional conditions, called semantic conditions

to contrast with the syntactic condition which is the pattern itself. (Heckmann calls semantic
conditions \where" patterns, whereas Queinnec calls them \check" patterns).

Value patterns can be thought of as a limited form of semantic condition because
they rely on comparing with a run-time value, not with some structure spelled out in the pat-
tern. Pattern matching systems di�er as to whether semantic conditions can be integrated
into patterns. In a pattern matching system embedded in a general-purpose programming
language, it is not usually necessary to have integration, since the programming language
usually has constructs (such as \if" statements) to do the testing. Some formal systems
have no support for semantic conditions. In burg and BEG, it is necessary to translate se-
mantic conditions into syntactic ones or not have them at all. For example, instead of using
a semantic condition to specify that a certain tree matches only if some integer constant
in it has the value 1, the tree representation must be changed to represent integer constant
nodes with value 1 as instances of a special \one" node. This method has limitations and
can be clumsy if it actually requires the tree to be transformed to add these special nodes.

3.1.5 Sensitivity to Change

While pattern matching helps factor a description by concept, patterns are very
sensitive to changes in the tree structure itself. If a single rule in the abstract grammar
describing the structure of the tree changes, it may require widely separated changes in
the description. Thus the bene�t of pattern matching for factoring must often be balanced
against the disadvantage of sensitivity to the tree structure.

Ideally, one would like a factoring method that reduces the sensitivity to changes in
the tree structure. Wadler [98] and more recently Palao Gostanza et al. [75] have introduced
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ways to name patterns over trees. Section 3.3.1 introduces a pattern matching construct,
the pattern de�nition, that generalizes these approaches.

3.1.6 Theoretical Results and Implementation

Pattern matching on trees has been studied extensively, pattern-variable binding
less so. Ho�mann and O'Donnell [47] showed that pattern matching with wild cards (but
no pattern variables) including conjunctive, disjunctive and negated patterns can be done
in time linear in the size of the tree with a bottom-up tree automaton. More precisely,
given a set of patterns that can be preprocessed o� line, every match site in the tree of
every pattern can be determined in time linear in the size of the tree and in the number
of successful matches. Chase [18] gave a faster algorithm for the o�-line processing than
Ho�mann and O'Donnell. Cai et al [17] have improved the speed ever more. Moreover,
Trafola's insert patterns and DORA's vertical iterators can also be matched using bottom-
up tree automata.

Farnum has shown that pattern matching can be used in an attribute grammar-like
formalism and that linear-time bottom-up tree matching can be used to do the matching and
binding. He showed that these attribute pattern sets can be converted to classical attribute
grammars, although it is not possible to determine statically whether every attribute is
de�ned [31].

3.2 Pattern Matching in Declarative Descriptions

When pattern matching is to be incorporated into a declarative framework, certain
issues come up that do not arise with compilers written in a general-purpose programming
language. The most basic issue is what happens when multiple patterns match or more im-
portantly what happens when attribute de�nitions controlled by di�erent patterns conict.
Other issues come up when patterns may match in multiple ways. This section discusses
these issues.

3.2.1 Conicting Attribute De�nitions

One way of handling conicting attribute de�nitions is to forbid the situation from
occurring. It would be an error when two attribute de�nitions for the same attribute apply
to the same node in a tree. If a pattern-matching system uses this rule, negated patterns are
essential in order to exclude possibilities. Forbidding conict, however, violates the principle
of factoring because a special case must be expressed in two places: once positively to guard
the special attribute de�nitions and once negatively to guard the normal case.

In an imperative language, one could write something like

if match(stmt, "ASGN_STMT[?place,BINOP[!PLUS,?place,INTEGER[1]]]")) {

/* handle increment of "place" */

: : :;

} else if (match(stmt,"ASGN_STMT[?place,BINOP[!PLUS,!place,?expr]]")) {

/* handle increment of "place" by "expr"*/
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: : :;

} else if (match(stmt,"ASGN_STMT[?place,?expr]")) {

/* handle assignment of "place" */

: : :;

} else : : :

and it is perfectly clear that the later patterns do not apply if the �rst one matches. One
attempt to transfer this method to declarative descriptions would be for each tree node
to use the de�nitions guarded by the �rst pattern that matches it. This rule is awed in
several ways. First, every set of de�nitions guarded by a pattern would have to de�ne all
the attributes. Thus a single case analysis must be used for all attributes. This situation is
possibly better than using an arbitrary case analysis, but it does not not take into account
the fact that di�erent kinds of subtasks in a compiler may require di�erent case analyses.
One way to ameliorate this situation is to de�ne a di�erent set of guarded de�nitions for
each subtask. This �x, however, unless made considerably more complicated, does not allow
attributes with slightly di�erent case analyses to share common cases.

Another serious problem with picking the �rst matching pattern is that it does not
avoid conicting de�nitions if attributes can be de�ned for nodes other than the root of the
pattern. For example, assume pattern-guarded attribute de�nitions are used to generate
di�erent code for identi�er references on the left hand of assignment statements:

ASGN_STMT[?expr&ID[?id],?rhs]

expr.code := "fetch address " ++ id;

?expr&ID[?id]

expr.code := "fetch " ++ id;

These de�nitions de�ne the code to be generated for a subtree of the form ID[?id]. In
the context of an assignment, the �rst de�nition should be used; otherwise the second is to
be used. However, the �rst de�nition matches ASGN_STMT nodes, not ID[?id] nodes. And
so when determining the set of de�nitions for an ID[?id] tree, only the second de�nition
matches, even in the context of an assignment. As a result, by the \�rst matching pattern"
rule, the code attribute will be de�ned twice for ID[?id] subtrees on the left-hand side
of assignments. The problem is that even though the patterns match di�erent nodes, the
guarded attribute de�nitions apply to the same node.

If one wishes to add pattern matching to a declarative formalism that, like attribute
grammars, permits attribution of nodes other than that matched by the root of the pattern,
resolving conicting attribute de�nitions must be done in a di�erent way. Rather than
prioritizing the patterns, the attribute de�nitions themselves can be prioritized. The highest
priority de�nition of an attribute is the one used. Farnum's attribute pattern sets [31] and
Dueck and Cormack's module attribute grammars [26] use this rule. Pattern-attribution
clauses are ordered by their textual appearance and each attribution clause guards a number
of attribute de�nitions. If two attribute de�nitions apply to the same node in a tree, the
textually earlier attribute de�nition is the one that holds.

One could also use a dynamic de�nition for \�rst." For example, \�rst" could mean
the �rst de�nition found in a preorder pattern-matching traversal of the tree. The problem
with such a de�nition of \�rst" is that it can be rather di�cult to determine statically
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when a de�nition will be overridden by another. Moreover this de�nition of \�rst" seems
too much tied to a particular implementation method.

In summary, if one wants to add pattern matching to an attribute grammar-like
formalism, it seems the only useful policies for resolving attribute de�nition conicts are to
disallow conict altogether (with the loss in factoring) or to use some version of Farnum's
textual ordering rule.

3.2.2 Multiple Matches

If the pattern that guards some attribute de�nitions could match in more than one
way, ambiguity may arise. For example, what would be the meaning of a pattern-guarded
attribution clause such as the following?

?expr & (BINOP[!PLUS,?x,INTEGER[0]] | BINOP[!PLUS,INTEGER[0],?x])

expr.code := x.code;

If the tree in question takes the form BINOP[PLUS,INTEGER[0],INTEGER[0]], then either
possibility matches. Presumably, one would want some sort of disambiguation that chooses
one particular match over the other. Otherwise, if both possibilities were used, expr.code
would have two conicting de�nitions, corresponding to the two possible bindings for x.
However, sometimes one would like all possible bindings to apply:

?expr & (BINOP[?_,?x,?_] | BINOP[?_,?_,?x] | UNOP[?_,?x])

x.env := expr.env

(Here _ is a \don't care" pattern variable in the manner of Prolog.) This fragment de�nes
the environment attribute of a child of a unary or binary expression node to get the parent's
environment attribute. If some disambiguating rule is used to choose between the �rst two
cases (that both match all BINOP nodes), then one of the two children of each BINOP node
will not get a de�nition of the parent's env attribute.

Thus one may wish to use such patterns in two di�erent ways. On the one hand,
sometimes a disambiguating rule is desired so that only one binding is used. On the other
hand, sometimes it is useful to use all bindings (in the spirit of Prolog). Using all bindings
is more elegant that using just one binding, but even in Prolog (in which all bindings are
attempted if necessary), there is a method to force a choice when desired.

3.3 Pattern Matching in APS

Our pattern matching system is inspired by Farnum's attribute pattern sets. The
pattern matching system in APS includes pattern variables, value patterns and conjunctive
patterns, as well as a restricted form of disjunctive patterns subsumed in the novel construct
of pattern de�nitions. Semantic conditions are attached to patterns using if. Non-linear
patterns are not permitted; instead, value patterns must be used. APS does not include
negated patterns. It seems cleaner to specify things positively. Moreover Farnum's conict-
resolution rule makes negated patterns less necessary.
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-- handle binop's in three cases:

-- predicate operators are easy---the result is always boolean;

-- divide (/) is special---it always forces a real result;

-- otherwise we choose the least common type.

match ?e=binop(predicate_operator(),?,?) begin

e.expr_type := boolean;

end;

match ?e=binop(divide(),?e1,?e2) begin

case Types${e1.expr_type,e2.expr_type} begin

match {...,?ty=longreal_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=set_type(),...} begin

e.expr_type := ty;

end;

else

e.expr_type := real;

end;

end;

match ?e=binop(arithmetic_operator(),?e1,?e2) begin

case Types${e1.expr_type,e2.expr_type} begin

match {...,?ty=longreal_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=real_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=longint_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=integer_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=shortint_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=set_type(),...} begin

e.expr_type := ty;

end;

end;

end;

Figure 3.1: An Example of Pattern Matching from Appendix B.3.3
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Patterns are used at the top-level to guard attribution clauses, and inside each
clause, pattern matching can be used to make further distinctions. These nested matches

permit factoring of common parts of patterns into a single top-level pattern. All matches
(that is, all possibilities of pattern variable bindings) are used in top-level matches. Nested
matches may either use all matches (if introduced by the keyword for) or use the �rst match
of the �rst pattern that matches (if introduced by the keyword case). The �rst match is
found by attempting all choices of a disjunctive pattern in order, top down through the
pattern. A case clause may also include a default clause (labeled with the else keyword)
to be used when none of the patterns match. The keyword case was chosen for pattern
matches that use the �rst match to emphasize the fact that it performs a case analysis of
the tree. The keyword for was chosen for pattern matching when all matches are to be
used to emphasize the fact that the body of the match may be executed multiple times.

Figure 3.1 provides an example of pattern matching in APS. There are three top-
level de�nitions that compute the type of binary operator expressions. The �rst attribution
clause is the simplest. If the operator is a predicate operator (such as \<"), the type of the
expression is boolean.

The second clause handles division (X/Y). In Oberon2, arithmetic is always done in
the maximum precision of the two operands. However, dividing two integers always returns
a real. (Integer division is accomplished with the DIV operator.) The clause performs a
nested match of the list of types of the two operands. Since the case keyword is used,
the �rst match is used. The {...} notation is explained more fully in Chapter 4. Here, it
means that the pattern {...,?ty=longreal(),...} matches if either of the operands has
LONGREAL type. In this case, the result will be a LONGREAL. Otherwise, the clause checks
if the operation is one on sets (X/Y denotes the symmetric set di�erence of sets X and Y).
If neither of these cases hold, the only (legal) possibility is that the operands are reals or
some variety of integer. In this case, the result will be a real and so the else clause for the
nested match de�nes the type to be real.

The third clause is similar. As with the clause for divide, this clause contains a
nested match on the types of the operands. In Oberon2, the numeric types are logically
nested:

LONGREAL � REAL � LONGINT � INTEGER � SHORTINT

Arithmetic is done in the smallest numeric type that includes both operands. Thus if either
operand is a LONGREAL, the result is a LONGREAL. Otherwise, the same rule applies to REAL,
and then down the hierarchy for LONGINT, INTEGER, and SHORTINT. Again, we must handle
the case of sets (A+B, for example, denoting the union of two sets). The divide operator
is included in the set of arithmetic operators and thus a division will match both clauses.
But the attribute de�nitions in the second clause will be higher priority than those in the
third clause.

The pattern syntax of APS provides a number of minor conveniences. For instance,
the children of a constructor can be ignored by using ... to substitute for whichever children
there might be:

match ?e=is_test(...) begin

e.expr_type := boolean;

end;



47

If the constructor de�nition needed to be changed to have more or fewer children, or to
have them in a di�erent order, this pattern would still be valid.

Another way in which dependence on the speci�c form of the tree can be reduced
is to use keyword parameters to the constructors:

-- the block is situated in the scope declaring the receiver and formals

-- Since the body is a "block", local declarations can shadow

-- outer declarations.

match proc_decl(header(receiver:=?rec),?body) begin

body.scope := rec.scope;

end;

This fragment uses the full Oberon2 abstract syntax from Appendix B.1. The header

constructor takes four parameters, but when writing this fragment, it wasn't necessary to
remember the order or what they were, it was only necessary to remember that the one of
interest for scoping is the receiver. This parameter is the second one for the constructor,
and thus this attribution clause is equivalent to the following:

match ?d=proc_decl(header(?,?rec,?,?),?body) begin

body.scope := rec.scope;

end;

Using the name rather than the position not only makes the pattern less dependent on the
exact shape of the tree, but is also less prone to error.

3.3.1 Pattern De�nitions

Disjunctive patterns and an extension of Farnum's vertical iterators are combined
in APS under the novel concept of pattern de�nitions. Pattern de�nitions are named dis-
junctive patterns that may take patterns as arguments. They are declared by giving all the
alternatives, separated by commas:

pattern logical_operator() : Operator := log_or(),log_and(),log_not();

pattern integer_operator() : Operator := mod(),div();

pattern arithmetic_operator() : Operator :=

plus(),minus(),times(),divide(),integer_operator();

pattern equality_operator() : Operator := equal(),not_equal();

pattern comparison_operator() : Operator :=

equality_operator(),less(),less_equal(),greater(),greater_equal();

-- predicates are things returning boolean values:

pattern predicate_operator() : Operator :=

logical_operator(), comparison_operator(), in_set();

-- NB: predicate_operator and arithmetic_operator between them

-- cover the space of operators.

None of these examples have parameters. Even without parameters, pattern de�nitions
have two uses; they express disjunctive patterns and they provide factoring. For example,
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in Figure 3.1, it was not necessary to list all the predicate binary operators. Moreover,
patterns such as arithmetic_operator are used in more than one location in the compiler
description. If APS had only disjunctive patterns without the ability to factor out common
patterns, a description could be forced into dangerous redundancy.

Pattern de�nitions may also take parameters. A pattern de�nition taking param-
eters may mimic a constructor:

pattern array_type(element_type : Type) : Type

:= open_array_type(?element_type),fixed_array_type(?,?element_type);

This pattern matches either of the two array types in Oberon2. Each choice in a pattern
de�nition must bind all the parameters. This pattern de�nition highlights two aspects of
factoring. First, since it can match either of the two array types, only one equation is
needed where two might otherwise be needed. The previous chapter had this example:

match ?e=aref(?array,?) begin

case array.expr_type begin

match array_type(?et) begin

e.expr_type := et.base_type;

end;

...

end;

end;

Without the ability to express both possibilities in a single pattern, it would be necessary
to duplicate code:

match ?e=aref(?array,?) begin

case array.expr_type begin

match open_array_type(?et) begin

e.expr_type := et.base_type;

end;

match fixed_array_type(?,?et) begin

e.expr_type := et.base_type;

end;

end;

end;

Thus, the fact that a pattern de�nition is a disjunctive pattern means that only one attribu-
tion clause is needed. Secondly, a pattern de�nition is named, and so can be used multiple
times. For example, Appendix B.5 includes several other uses of array_type including the
check that pointer types be declared only for arrays and records:

-- "[The pointer base type] must be a record or array type"

match pointer_type(?base) begin

case base.base_type begin

match any_type() begin end; -- avoid error cascades
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match array_type(...) begin end;

match record_type(...) begin end;

else

indicate an error

end;

end;

If for some reason, a new array type were added, a new choice could be added
to array_type. The uses of array_type would then all work for the new array type as
well. Pattern de�nitions thus permit a pattern-based description to be less dependent on
the precise structure of the tree.1

Pattern de�nitions may also be recursive. Recursion gives the power to express
Farnum's vertical iterators and Queinnec's tree patterns. The Oberon2 compiler does not
use any (user-de�ned) recursive pattern de�nitions2. A simple example of what can be ac-
complished is a recursive pattern de�nition to match an arithmetic expression that includes
a constant:

pattern expression(constant_operand : Expression) : Expression =

?constant_operand=constant_expression(...),

unop(?,expression(?constant_operand)),

binop(?,expression(?constant_operand),?),

binop(?,?,expression(?constant_operand));

match assign_stmt(?lhs,?rhs=expression(?const)) begin

...

end;

In the body of the match, rhs will be bound to an arithmetic expression that includes
constants, one of which is bound to const. Because a constant may occur as either operand
of a binary operator, the pattern has multiple possible matches. Pattern de�nitions are
similar to Palao Gostanza's \active destructors" but the latter may only yield one match
(even if the surrounding match then fails).

As already mentioned, in top-level pattern matches in APS, every possible bind-
ing is used. Any de�nitions in the match in the preceding example must take this non-
determinism into account. Attribute de�nitions guarded by multiple match patterns must
be written to avoid conicts; APS provides no method for disambiguating between two
instances of the same attribute de�nition:

match assign_stmt(?lhs,?rhs=expression(?const)) begin

lhs.uses_constant := const.value; -- error!

const.used := true; -- OK

end;

1As with constructors, keyword parameters and the ... notation for ignoring parameters may be used.
2The APS compiler in Appendix C does however have several user-de�ned recursive pattern de�nitions.
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The �rst de�nition is erroneous because it could apply multiple times, leading to multiple
(conicting) de�nitions of the attribute lhs.uses_constant. On the other hand, the second
de�nition is legal because each constant literal in the expression is matched in only one way.
Section 3.3.3 describes how the APS compiler determines whether an attribute de�nition
may conict with itself.

Patterns that may match in multiple ways can also cause problems for semantic
conditions (including value patterns) even if the �rst match is to be used. The problem is
that the condition may a�ect the way in which the resulting match is selected. For example,
say we had a nested match that tests if two expressions are being added that share the same
constant:

match assign_stmt(?lhs,?rhs) begin

case rhs begin

match binop(plus(),expression(constant_expression(?value)),

expression(constant_expression(!value)))

begin

lhs.uses_constant_twice := value;

end;

end;

end;

Although the �rst match is used, the pattern match cannot proceed without logical back-
tracking because the binding of a value in the �rst term may not have a matching value in
the second term. In particular, the preceding fragment is not equivalent to the following
fragment:

match assign_stmt(?lhs,?rhs) begin

case rhs begin

match binop(plus(),expression(constant_expression(?value)),

expression(constant_expression(?value2)))

begin

if value = value2 then

lhs.uses_constant_twice := value;

endif;

end;

end;

end;

The second fragment merely tests if the �rst constant in each term is the same (and therefore
will fail in cases where the �rst succeeds). If for were used in both fragments, they would be
equivalent.3 Section 3.3.4 explains the restriction on semantic conditions and value patterns
that ensures that case matches can always be implemented without backtracking.

3Unfortunately, both would also be illegal, because the de�nition of lhs.uses_constant_twice would

conict with itself. Chapter 6 introduces some attribute de�nitions that would be legal in the context of
such for statements.
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3.3.2 Limits on Pattern De�nition Recursion

Recursion in pattern de�nitions is limited so that the set of the subtrees matched
can be determined using a �nite-state bottom-up tree automaton. The set of such trees is
the set of regular trees as de�ned by Courcelle [22]. Mutual recursion is not permitted, and
even direct recursion is limited. Pattern de�nitions must be bottom-linear; that is, all of
the parameters must be passed in order unchanged to any recursive call. In other words,
if the pattern de�nition p has arguments a1; a2; : : : ; an, the recursive call must have the
form p(?a1,?a2,: : :,?an). In type theory, Solomon [88] uses similar restrictions to ensure
in�nite types are regular types. This restriction prevents a pattern de�nition from requiring
long-distance matching. The following pattern de�nition is illegal:

pattern far(e : Expression) : Expression =

binop(times(),far(binop(plus(),?e,?)),?), -- illegal: not bottom-linear

?e;

This pattern de�nition binds its parameter to an expression that is nested by n multiplica-
tion and n addition operations:

(e+y1+y2+: : :+yn)*x1*x2*: : :*xn

It is illegal because instead of having a recursive call of the form far(?e), it has an additional
matching requirement on the actual parameter.

The term \bottom-linear" is used to evoke the relationship between left-linear (and
right-linear) context-free grammars and regular expressions. In a right-linear context-free
grammar, a non-terminal can only be in the right-most position of a production:

A ! a A right-linear
B ! a B b not right-linear

Left-linear context-free grammars are de�ned analogously. Context-free grammars describe
a strictly larger class of languages that regular expressions, but left-linear and right-linear
context-free languages describe exactly the same set of languages as regular expressions.4

Although APS requires recursive pattern de�nitions to be bottom linear, it is
interesting to note that top-linear pattern de�nitions behave di�erently from bottom-linear
ones. In a top-linear pattern de�nition, a recursive call must occur at the top level. For
example, the following pattern de�nition matches any assignment statement and binds its
argument to the right-hand side or to any factor of the right-hand side:

pattern assigned_factor(x : Expression) = -- top-linear

assigned_factor(binop(times(),?x,?)),

assigned_factor(binop(times(),?,?x)),

assign_stmt(?,?x);

4In the usual de�nition of right-linear context free grammars, mutual \recursion" is permitted but a

nonterminal may only occur at the end of a rule. Bottom-linearity could have been similarly de�ned, but
the given rule is more exible.
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This pattern de�nition is not bottom-linear, but it is top-linear. Recursion in a top-linear
pattern de�nition is useless unless there are parameters. Top-linear pattern de�nitions can
be used to describe all the same sets of trees as bottom-linear pattern de�nitions. Moreover,
they are more powerful, although not as powerful as unrestricted pattern de�nitions:

pattern matched(x,y : Expression) : Expression = -- top-linear

matched(binop(times(),?x,?),binop(times(),?y,?)),

binop(plus(),?x,?y);

match ?x=matched(expr_constant(?),expr_constant(?)) begin

: : :

end;

The match statement matches the sum of two terms each of which has the same number of
factors and each of which starts with a constant. Such a pattern cannot be matched using
a bottom-up �nite state automaton, because it would not be possible to keep track of how
many factors each term had. A top-down automaton could perform the matching if it could
traverse two sections of the tree in parallel.

3.3.3 Checking Self-Conict

Lexical ordering is used to resolve conicts between two de�nitions that originate
from di�erent rules in the speci�cation. However, as stated earlier (on page 49), there is no
mechanism in APS for resolving two conicting instances of the same attribute de�nition.
However, a static check can be performed that ensures that a de�nition will not conict
with itself. Unfortunately, this check is complex. The complexity is comparable with
the de�nition of LALR(1) necessary for specifying context-free grammar based parsers.
Theoretically, anyone specifying a parser using a LALR(1)-based parser generator should
understand the technical de�nition of LALR(1), but usually one can avoid the details.
Similarly, most of the time it is not necessary to know the full details of the analysis
speci�ed in this section.

A variable binding is said to be controlling for an attribute de�nition if for all
match possibilities, every instance of the de�nition (due to di�erent bindings for pattern
variables) has a di�erent value for this variable. In other words, each way that the guarding
patterns match in a tree yields a di�erent value for this variable. Attributes may only be
de�ned for variables with controlling bindings. This rule guarantees that no de�nition can
conict with itself.

It usually works to assume that every binding is controlling everywhere except in
the body of a for nested inside the scope of the binding. However, this approximation is
not safe. The APS compiler uses a static de�nition of controlling that safely approximates
the true de�nition. This section describes the basics of the static de�nition. For simplicity,
assume that pattern de�nitions are expanded at all their call sites into the form:

pattern (formals)body(actuals)

Choices are separated by | and any recursive calls of bottom-linear pattern de�nitions are
replaced with @|these features are not legal APS syntax; they merely serve as a notation
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for an internal form. Moreover, value patterns !expr can be replaced with a binding and a
semantic condition: ?v2734 & if v2734=expr. Using these canonicalizations and ignoring
the types of nodes, any pattern can be expressed in one of the following forms:

� ::= ?id

if expr

�0 & �00

�0 | �00

constructor(�1,�2,: : :,�n) n � 0
pattern (id1,id2,: : :,idn)�

0(�1,�2,: : :,�n) n � 0
@

The structure of a pattern can thus be described as a tree, and one can speak of going \up"
(toward the root) or \down" (away from the root) within the pattern.

This section de�nes sets associated with each subpattern of a pattern that will
enable a de�nition of ambiguity. If the pattern is unambiguous in certain ways, then a
pattern variable will be known statically to be controlling.

For each subpattern, �, two sets are de�ned; they represent the constructors and
the positions of the pattern. The set of constructors for a pattern (C(�)) is the set of
constructors that could label a subtree matched by �. The set of positions of a pattern
(P (�)) is the set of positions that the subtree being matched by � could assume in a
matched tree.

C(�) � Constructors

P (�) � Constructors� f1; 2; : : :g

(where Constructors is the set of all constructors, and f1; 2; : : :g is the in�nite set of natural
numbers). These sets are used to determine whether a pattern is ambiguous if the matcher
can only look at one node label in the tree (that is, one constructor) at a time.

The de�nitions of the sets are given for each possible form of the pattern. The
notation here approaches that of an attribute grammar. See Appendix C.5.1 for the real-
ization in APS. The sets of constructors are computed bottom-up and the sets of positions
are computed top-down. These equations and set constraints are potentially circular, and
so the least �xpoint is used.

If a pattern variable occurs as part of a pattern, then as long as it is not a formal
parameter to a pattern de�nition, nothing is known about the set of constructors it could
match:

� ::= ?id when id is not a formal parameter
C(�) =Constructors

Similarly, semantic conditions can occur anywhere, and so again, nothing is known
about the constructors:

� ::= if expr

C(�) =Constructors

Conjunctive patterns take the intersection of constructor sets and propagate the
positions to both subpatterns:
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� ::= �0 & �00

C(�) = C(�0) \ C(�00)
P (�0) = P (�)
P (�00) = P (�)

A disjunctive pattern is similar, but in this case the constructor sets are unioned.

� ::= �0 | �00

C(�) = C(�0) [ C(�00)
P (�0) = P (�)
P (�00) = P (�)

In a simple constructor call, the set of constructors and the set of positions can be
calculated exactly.

� ::= constructor(�1,�2,: : :,�n)

C(�) = fconstructorg

for i 2 f1; : : : ; ng
P (�i) = f(constructor; i)g

For an inlined pattern de�nition, the set of constructors includes all the construc-
tors for the choices in the body. The positions of the choices include the positions for the
whole pattern, but also include the positions for all of the recursive calls in the body. The
constructors for any recursive call are those for the call as a whole. The constructors for
each formal parameter binding are the constructors for the corresponding actual parame-
ter. The positions for each actual parameter includes the positions for each corresponding
formal parameter binding:

� ::= pattern (id1,id2,: : :,idn)�
0(�1,�2,: : :,�n)

C(�) = C(�0)
P (�0) � P (�)

for each �@ = @ 2 �0

C(�@) = C(�0)

P (�0) � P (�@)
for each i 2 f1; 2; : : : ; ng

for each �0i = ?idi 2 �0

C(�0i) = C(�i)
P (�i) � P (�0i)

Finally, if the match comes from a known place, the positions can be copied from
there:

match : : : ?id : : : begin

...

for/case id begin

...
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match � begin : : : end;

...

end;

..
.

end;

P (�) = P (?id)

The constructors C(�) cannot be similarly \copied back" because pattern matching is not
required to be exhaustive.

In all other cases, the positions of a top-level pattern are unknown:

P (�) = Constructors � f1; 2; : : :g

All these equations are combined and the least �xpoint is taken. After doing this step,
it is possible to make a further pass to re�ne the de�nitions of C(�) to take into account
conjunctive patterns. The algorithm given in Appendix C.5.1 takes this approach. As it
happens this simpli�cation does not a�ect the following de�nitions of ambiguity, but it does
make a big di�erence for the canonicalization in Section 3.4.

The constructor and position sets are used to determine whether a pattern is
\one constructor look-ahead" (OCLA) ambiguous for top-down or bottom-up tree parsing.
Intuitively a pattern is top-down OCLA-ambiguous if when \traveling" down the pattern,
one cannot tell from the constructor on the tree being matched which choice to take at a
disjunctive pattern. A pattern is bottom-up OCLA-ambiguous if just knowing the position
of a node is not enough to tell which choice of a pattern de�nition to go into at a pattern
de�nition call, or whether another wrapper should be added when reaching the top of a
pattern de�nition body and if so, which wrapper to choose. The following paragraphs de�ne
this intuition more formally.

The only patterns that can be top-down OCLA-ambiguous are choices inside pat-
tern de�nitions, since disjunctive patterns are only permitted at the user level when pack-
aged in pattern de�nitions. Because of the nature of bottom-linear patterns, choices and
also recursive pattern de�nition calls can both be bottom-up OCLA-ambiguous. A choice
is top-down OCLA-ambiguous if the sets of constructors for the choices are not disjoint. It
is bottom-up OCLA-ambiguous for a particular parameter if the sets of positions for the
formal parameters are not disjoint. It is bottom-up OCLA-ambiguous for holes if the sets
of positions for the holes in each choice are not disjoint.

� ::= �0 | �00

TD-Ambig(�) � :disjoint(C(�0); C(�00))
BU-Ambig idi(�) � 9�0i = ?idi 2 �0; �00i = ?idi 2 �00 : :disjoint(P (�0i); P (�

00
i ))

BU-Ambig@(�) � 9�@1 = @ 2 �0; �@2 = @ 2 �00 : :disjoint(P (�@1 ); P (�
@
2 ))

A recursive pattern de�nition is recursively bottom-up OCLA-ambiguous if it is not possible
to tell from the current position whether another \wrapper" is to be added or not:

� ::= pattern (id1,id2,: : :,idn)�
0(�1,�2,: : :,�n) n � 0

BU-Ambig(�) � 9�@ = @ 2 �0 : :disjoint(P (�@); P (�))
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This information is used to determine whether it is possible to transmit values from a place
in a tree matched by one subpattern to another place in the tree matched by a di�erent
subpattern. Transmitting here means using classical attribute grammar equations.

Attributes that transmit values between two nodes bound by pattern variables can
be generated if the \route" between the two pattern variables has the right properties. Only
\routes" between subpatterns in the same choice branch of a pattern de�nition or between
subpatterns outside all choices are meaningful. Scoping ensures that the programmer does
not attempt to use values from one branch in a di�erent branch or outside the pattern
de�nition altogether. See Figure 3.2 for a sample route.

The route from one subpattern to another consists of a directed graph over the
subpatterns in the pattern tree. The route consists of two subgraphs: the upward part

consisting of arcs up the pattern tree from the source to the join points , and the downward
part consisting of arcs down the pattern tree from join points to the destination. If we
reverse the direction of all arcs in the route from A to B, we obtain the route from B to A.

The de�nition of the route and of join points is given here constructively. If the
pattern includes no inlined pattern de�nition calls, the only join point is the least common
ancestor, and the route is the route is simply the directed path up from the source to this
join point and then down to the destination. More generally, whenever the least common
ancestor is not a pattern de�nition call, it is the only join point. For example, in the diagram
in Figure 3.2, the constructor call assign_stmt(.,.) at the top is the only join point on
the route from ?lhs to ?const.

When the least common ancestor is a pattern de�nition call, then the source must
be a descendant of one of the actual parameters to the call, and the destination must be a
descendant of a di�erent parameter. In this case, we de�ne the set of join points recursively
as the union for each choice in the body of the pattern de�nition of the join point set for
the use of the respective formal parameters. In addition, the route is de�ned to include the
respective routes between the uses of the formal parameters.

The upward route from the source includes the path to the least common ancestor
but at every pattern de�nition call along the path (exclusive of the ends), the route also
includes the routes from each use of the corresponding formal parameter and from each
hole up to the least common ancestor. In Figure 3.2, the route from ?const to ?lhs takes
multiple paths through the pattern de�nition body. The downward part of the route from
the least common ancestor to the destination is simply the upward part of the route from
the destination to the source.

A route changes direction from going up to going down precisely at a join point.
A meaningful route (as de�ned earlier) will have only two kinds of join points. Either the
join point is a constructor call and the route comes up through one parameter position and
goes down through a di�erent one, or else it is a conjunctive pattern, in which case the
route comes up through one subpattern and down through the other. A route will not come
up from one choice in a disjunctive pattern and go down the other because routes always
follow all choices in parallel.

A route is fully OCLA-deterministic if none of the subpatterns on the upward part
of the route is bottom-up OCLA-ambiguous and none of the subpatterns on the downward
part of the route is top-down OCLA-ambiguous. A route is partially OCLA-deterministic
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assign_stmt(?lhs,?rhs &

pattern (c)

?c & constant_expression(?ig0) |

unop(?ig1,@1) |

binop(?ig2,@2,?ig3) |

binop(?ig4,?ig5,@3) (?const)

.|.

.|.

 
3@

binop(.,.,.)

?ig2 ?ig3@2
 ?ig4 ?ig5

binop(.,.,.)

.|.unop(.,.)

@ 
1?ig1

.&.

?c constant_expression(.)

?const

?lhs

pattern(c).(.)?rhs

.&.

assign_stmt(.,.)

?ig0

top−down OCLA−ambiguous

Route from  to ?lhs ?const

� C(�) P (�)

pattern(c).(.) fb; c; ug f(a; 2)g

body fb; c; ug f(a; 2); (u; 2); (b; 2); (b; 3)g

.&. fcg f(a; 2); (u; 2); (b; 2); (b; 3)g
...

...
...

@1 fb; c; ug f(u; 2)g

binop | binop fbg f(a; 2); (u; 2); (b; 2); (b; 3)g

binop(?ig2,@,?ig3) fbg f(a; 2); (u; 2); (b; 2); (b; 3)g

@2 fb; c; ug f(b; 2)g

binop(?ig4,?ig5,@) fbg f(a; 2); (u; 2); (b; 2); (b; 3)g

@3 fb; c; ug f(b; 3)g

?const Constructors f(a; 2); (u; 2); (b; 2); (b; 3)g
a � assign stmt; b � binop; c � constant expression; u� unop

Figure 3.2: A pattern, routes in the pattern, and some of the constructor and position sets
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if it would be fully OCLA-deterministic except for some top-down OCLA-ambiguity in
pattern matches where only the �rst match is used. For example, in Figure 3.2, the route
from ?const to ?lhs is fully OCLA-deterministic. Since this example comes from a top-level
match, all matches are used and thus the route from ?lhs to ?const is not even partially
OCLA-deterministic, because it passes through a top-down OCLA-ambiguous disjunctive
pattern. If the pattern match were in a case statement then the route from ?lhs to ?const
would be partially OCLA-deterministic.

A pattern variable binding is OCLA-controlling at the point of an attribute def-
inition if every route from it to any subpattern (except those in the bodies of pattern
de�nitions) is at least partially OCLA-deterministic. If a binding is OCLA-controlling, an
instance of the binding for a particular tree can be used to determine all the other variable
bindings in patterns guarding the attribute de�nition. First, because none of the patterns
along the route from the binding and the root of the pattern is bottom-up ambiguous, a
binding can be made for each of these patterns working up from the variable binding. Then
other parts of the pattern can have their bindings found deterministically from the spine
in the tree corresponding to the route to the root in the pattern. The only problem would
be top-down ambiguous subpatterns away from the route to the root. By the de�nition of
partial OCLA-determinicity, such subpatterns can only be in pattern matches, in which the
�rst match is used. But in such matches, the �rst choice that works is chosen, and thus one
can determine the bindings even below the ambiguity. Therefore, if a pattern variable bind-
ing is OCLA-controlling for a certain attribute de�nition, it is necessarily truly controlling
for that de�nition. The converse is not true, because the de�nition of OCLA-controlling
only takes into account single constructor look-ahead.

The APS compiler requires (but currently does not check) that the node named
in an attribute de�nition be OCLA-controlling for that de�nition. This restriction is not
particularly onerous. The di�erences between a binding being OCLA-controlling and it
being truly controlling are that the former does not take into account semantic tests and
only uses one node look-ahead for determining ambiguity. No static de�nition could handle
semantic conditions fully because that would require solving the halting problem. Moreover,
factoring can often remove the need for multiple node look-ahead.

3.3.4 Limits on Semantic Conditions

A semantic condition needs values. If a semantic condition occurs in a case clause,
the values that can be used are restricted to be ones uniquely determined at the point where
the semantic condition is tested. Each of the values either comes from bindings outside the
scope of the pattern (in which case, we assume it comes from the root of the pattern) or
from another binding in the same pattern. In either case, the route from the semantic
condition to the value must be fully OCLA-deterministic.

3.4 Canonicalization

Descriptional composition can only apply when pattern matching has been ex-
pressed using normal attribute de�nitions. This section describes canonicalizations of pat-
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tern matching in the APS compiler as needed for implementation and descriptional com-
position. The �rst transformation (\deordering") adds additional boolean attributes so
as to express the \�rst textual de�nition" rule that prioritizes attribute de�nitions. This
transformation is always used because it greatly simpli�es the implementation of attribu-
tion equations, especially those including side-e�ecting \procedure calls" (see Section 6.2.3).
The other transformations are only used before descriptional composition to ensure that
pattern matching on the intermediate form is expressed in attributes. The result of the
transformations is a conditional attribute grammar with a set of unordered attribute de�ni-
tions for each constructor in the tree language. First, a direction is chosen for each attribute,
synthesized or inherited. Then local values must be located somewhere within the pattern.
The next step generates attributes and de�nitions to express pattern matching and to carry
needed values to the location where the attribute de�nition needs them. The �nal step is
to collect together all the de�nitions that apply to a single constructor. At this point the
canonicalization is complete, but several simpli�cations are possible.

3.4.1 Deordering

Attribute de�nitions are not ordered in attribute grammars, but in APS, ordering
is essential for resolving attribute de�nition conicts. Deordering is the task of removing
this dependence on textual order.

Deordering is accomplished by adding new boolean attributes with default value
false. These boolean attributes are set to true when certain attribute de�nitions are
activated, and tests of the attributes are used to guard later attribute de�nitions.

One could add a new boolean attribute for each attribute de�nition. Then each
attribute de�nition is placed in a conditional clause that ensures that no textually earlier
de�nition applies. For example, several de�nitions of the attribute a of the form

x.a := ex;
...

y.a := ey;

...

z.a := ez;

would yield the following unordered de�nitions:

x.a := ex;

x.a1 := true;

...

if not y.a1 then

y.a := ey;

endif;

y.a2 := true;

...

if not z.a1 and not z.a2 then
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z.a := ez;

endif;

z.a3 := true;

A �nal attribution clause could be added to handle the default:

match ?any:phylum begin

if not any.a1 and not any.a2 and not any.a3 then

any.a := default;

endif;

end;

As it happens, it is easier and more e�cient to keep defaults implicit.
Deordering as explained in the previous paragraph generates an unordered de-

scription whose size in the worst case is on the order of the square of the size of the input.
The new attributes themselves contribute only linearly, but the conditions that check the
previous de�nitions can be quadratic in size. Many of the checks may be unnecessary. In
particular, if the pattern context ensures that two di�erent de�nitions could not conict,
the later one need not check the earlier one's boolean attribute. For example, if the �rst
two de�nitions above are guaranteed not to conict, there is no need to guard the second
de�nition with a test of a1. Moreover, if an attribute de�nition is guaranteed not to con-
ict with any later de�nition, there is no need to generate a boolean attribute for it. The
transformed example could thus be simpli�ed:

x.a := ex;

x.a1 := true;

...

y.a := ey;

y.a2 := true;

...

if not z.a1 and not z.a2 then

z.a := ez;

endif;

In this example, only the last attribute de�nition conicts with earlier ones, so
instead of having an attribute for each for the �rst two de�nitions which is true when the
de�nition is active, one could instead have a single attribute for the last de�nition that is
true when it should not be active:

x.a := ex;

x.a3 := true;

...

y.a := ey;

y.a3 := true;

...
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if not z.a3 then

z.a := ez;

endif;

Only one test is required now. The former kind of generated boolean attributes are called
attractors to distinguish them from the latter kind, which are called repeller attributes.

Further simpli�cations are possible: sets of attribute de�nitions in which no def-
inition conicts with any other can share attractor or repeller attributes. For example,
attribute de�nitions in di�erent branches of the same if or case statement cannot conict
and can be grouped together.

Such heuristics can greatly reduce the size of the result of the deordering transfor-
mation. The following results come from the Oberon2 compiler in Appendix B. For each
module, it shows the number of attributes and number of instances (both in assignments
and in tests) that are generated according to various heuristics: \naive" deordering which
generates one attribute for every de�nition, except the last; \attractors" and \repellers"
only deordering, in which only one or the other kind of boolean attribute is generated;
\mixed" deordering where an attempt is made to generate the minimum number of ei-
ther kind; \folded" deordering, in which attractors and repellers are shared among sets of
attributes with no conicts.

Module Naive Attractors Repellers Mixed Folded

OBERON2_RESOLVE 108 1044 46 145 24 123 18 117 14 98

OBERON2_COMPILE_COMPUTE 98 1418 1 2 1 2 1 2 1 2

OBERON2_CHECK 61 106 7 17 7 17 6 16 6 16

OBERON2_LAYOUT 15 15 1 2 1 2 1 2 1 2

OBERON2_TRANSLATE 226 2330 69 586 68 585 41 558 29 375

GCC_TREE 35 409 22 102 29 81 5 85 5 85

GCC2C 170 2314 9 37 20 48 6 34 6 34

More improvement is possible. The current system looks at the C(:) and P (:) sets for
pattern variables to see if two attribute de�nitions might conict; a more sophisticated
system would consider more of the pattern. A later implementation of APS could also do
better with polymorphic attributes. Currently, a deordering attribute is declared for all the
phyla for which the attribute being deordered is declared, but conicts may arise for only
some of the phyla being attributed.

3.4.2 Choosing a Direction

In an attribute grammar, each attribute is either synthesized or inherited. In the
de�nitions associated with a production, there are attribute de�nitions for the synthesized
attributes of the parent and the inherited attributes of the children. In APS, however,
the pattern guarding the attribute de�nition is not necessarily a single constructor call.
Therefore \synthesized" and \inherited" would be meaningless concepts in APS.

Nevertheless, when converting a pattern-matched description to a conditional at-
tribute grammar, it makes a di�erence which direction is chosen for each attribute. An
attribute grammar provides a case analysis on the type of the node for synthesized at-
tributes and on the type of the parent for inherited attributes. Exploiting this limited
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form of pattern matching well can yield a simpler attribute grammar, than say, having all
attributes be synthesized. The methods used to choose a direction for attributes are neces-
sarily heuristics. The description writer may use pragmas to override a poor choice on the
part of the heuristic.

A module in APS expressing a simple heuristic is given in Appendix C.5.2. Basi-
cally for every assignment, it checks to see how many copies of it would have to be made if
it were inherited versus if it were synthesized. It chooses the direction that requires fewer
copies.

3.4.3 Locating Local Variables

In an attribute grammar, local attributes are de�ned locally to a production, but
in APS, local variables are declared local to some pattern-matching context. If pattern
matching must be converted to classical attribution, such as before descriptional compo-
sition, it may be necessary to �nd a \home" for a local variable. If the local variable is
used only in de�ning attributes of nodes taking part in the same production, it need not be
changed. However, if it will be used in de�ning attributes of nodes farther apart, the value
must be transmitted somehow from one node to the other. For instance, in the following
example (from Appendix C.2.1), three di�erent nodes are attributed (the braces ({ }) are
sequence-matching syntax; consider them to be sugar for a constructor with one argument):

match ?d=attribute_decl(?,function_type({?formal},{?rd}),default:=?def)

begin

new_scope : Scope := nested_contour(d.scope);

formal.scope := new_scope;

rd.scope := new_scope;

def.scope := new_scope;

end;

In this fragment, the local variable new_scope is used in all three de�nitions and thus before
pattern matching can be replaced with attribution, new_scope must be canonicalized as an
attribute of a node referred to in the pattern.

Any controlling subpattern will do, but it is better if one chooses a place closer
to where the local variable is used. It also leads to a more e�cient implementation if a
constructor call pattern is chosen to minimize the times the value of the local variable must
be copied. In the previous example, suppose the function_type node is chosen. A new
conjunctive pattern is added above the chosen site and a new pattern variable is placed in
the other branch. The local value is changed to a synthesized attribute of the node bound
by the pattern. For example:

attribute Type.LOCATED_new_scope : Scope;

match ?d=attribute_decl(?,?L=function_type({?formal},{?rd}),

default:=?def)

begin

L.LOCATED_new_scope := nested_contour(d.scope);

formal.scope := L.LOCATED_new_scope;
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rd.scope := L.LOCATED_new_scope;

def.scope := L.LOCATED_new_scope;

end;

If no subpattern is controlling, then no attribute can be de�ned in the scope of the
local variable. Thus the local variable's value is not used anywhere and the local variable
can be discarded as \dead" code.5

3.4.4 Generating Match and Transmission Attributes

This section describes how patterns can be implemented using attributes and at-
tribution clauses. This transformation is necessary before descriptional composition can be
used. Since the transformation introduces many attributes, it is not used except as an aid
for descriptional composition.

This transformation generates attributes that transmit values from various parts
of the tree matched by the pattern to the node matched by the controlling pattern for some
attribute de�nition. The attributes transmit values used in the attribute de�nition and
also transmit pattern matching information, in the form of boolean attributes. Attribute
equations are generated along the routes to needed values from the controlling pattern
variable for the de�nition. For the purposes of this discussion, it is assumed that there is only
one attribute de�nition guarded by the patterns being implemented. Multiple de�nitions
can be handled each in turn, with sharing of the generated attributes when possible.

For each subpattern �, and each value id.a used in the de�nition for which � is
on the route between ?id and the controlling pattern, the transformation will generate a
new attribute. This attribute will be synthesized if the � is on the upward part of the
route from ?id to the controlling pattern, and inherited if it is on the downward part of the
route. Similarly, for each subpattern �, there will be a boolean pattern-matching attribute;
inherited if � is above the controlling binding in the pattern, otherwise synthesized. In order
to reduce the number of attributes generated, some value or pattern matching attributes
will be merely renamings , that is, aliases, of other attributes.

For example, the following clause from Appendix B.3.2 states that the scope of
the body of a procedure is the scope that was determined for the receiver in its header:

match proc_decl(header(receiver:=?rec),?body) begin

body.scope := rec.scope;

end;

After a simple canonicalization that names every pattern variable and removes keyword
parameters for patterns, the clause has the form

match proc_decl(header(?g1,?rec,?g2,?g3),?body) begin

body.scope := rec.scope;

end;

The controlling pattern here is ?body, and so we need to generate attributes to bring the
result of the pattern match and the value rec.scope to it. After inlining match attributes
whose values are always true and substituting renamings, the following code is generated:

5Chapter 6 introduces some new kinds of attributes that can be assigned in these situations.
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match ?x=proc_decl(?x1,?x2) begin

x2.irec_scope?body := x1.srec_scopeheader(?g1;?rec;?g2;?g3);

end;

match ?x=header(?x1,?x2,?x3,?x4) begin

x.srec_scopeheader(?g1;?rec;?g2;?g3) := x3.srec_scope?rec;

end;

match ?x=proc_decl(?x1,?x2) begin

x2.scope := x2.irec_scope?body

end;

The subscripted names are simply identi�ers; their internal structure is not signi�cant.
A more complicated case for pattern matching can be found in Appendix B.5:

pattern op(op:Operator; arg:Expression) : Expression :=

unop(?op,?arg),binop(?op,?arg,?),binop(?op,?,?arg);

...

match op(logical_operator(),?arg) begin

Use arg.expr_type to de�ne arg.errors

end;

In this example, the only required value is already available at the controlling pattern ?arg,
but implementing pattern matching still requires some boolean attributes to be generated.
First pattern de�nitions are inlined yielding the top fragment in Figure 3.3. Then after
performing the transformation, inlining constant true match attributes and using the gen-
erated \renamings," the result at the bottom of Figure 3.3 is obtained. The center of the
�gure shows the ow of information in the pattern to the controlling pattern, ?arg. This
example illustrates once again the notational advantage of using pattern de�nitions.

The remainder of this section describes the transformation somewhat formally by
showing what source-level APS code is generated for each subpattern. As described here,
the transformation does not work for constructors with semantic parameters, nor with
pattern de�nitions with choices more complex than pattern de�nition or constructor calls.
It is straightforward to handle these cases, but they needlessly add to the complexity of an
already complex discussion.

The transformation assumes attributes are de�ned for every subpattern in the
pattern, but in the presence of pattern functions, this assumption leads to a great prolifer-
ation of attributes. Accordingly, the transformation also generates renaming declarations
that serve as alias declarations with which a single attribute may have multiple names.
Renamings are declared with an equal sign (=).

In the following discussion, all the routes mentioned are from the controlling bind-
ing. First, the discussion centers on patterns on the upward part of the such routes with
a case analysis on each kind of pattern. For each kind of pattern, the generate clause
shows what source-level APS code is generated in this case. For these patterns, inherited
attributes are generated. Then the discussion moves to patterns on the downward part of
the routes, for which synthesized attributes are generated. Again a case analysis is used.
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match pattern(op,arg) unop(?op,?arg) |

(binop(?op,?arg,?ig1) |

binop(?op,?ig2,?arg))

(pattern() log_or()|log_and()|log_not() ()), ?arg)

begin

body

end;

.|.

binop(.,.,.) binop(.,.,.)

.|.unop(.,.)

?op ?ig2 ?arg?op ?arg

?op ?arg

?arg.|.

.|.log_or()

log_and() log_not()

pattern matching
information goes in
this direction

?ig1

match ?x=log_or() begin

x.smatchorjandjnot := true;

end;

match ?x=log_and() begin

x.smatchorjandjnot := true;

end;

match ?x=log_not() begin

x.smatchorjandjnot := true;

end;

match ?x=unop(?x1,?x2) begin

if x1.smatchorjandjnot then

x2.imatch?arg := true;

endif;

end;

match ?x=binop(?x1,?x2,?x3) begin

if x1.smatchorjandjnot then

x2.imatch?arg := true;

endif;

end;

match ?x=binop(?x1,?x2,?x3) begin

if x1.smatchorjandjnot then

x3.imatch?arg := true;

endif;

end;

match ?x=unop(?x1,?x2) begin

if x2.imatch?arg then

body

endif;

end;

match ?x=binop(?x1,?x2,?x3) begin

if x2.imatch?arg then

body

endif;

end;

match ?x=binop(?x1,?x2,?x3) begin

if x3.imatch?arg then

body

endif;

end;

Figure 3.3: Match attributes introduced to express a complicated pattern.
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For disjunctive patterns, the inherited attributes of each of the choices are simply
made aliases of the ones for the combination:

� ::= �0 | �00

generate

"imatch�0 = imatch�;

imatch�00 = imatch�;

iid_a�0 = iid_a�;

iid_a�00 = iid_a�;

for each id.a reached along a route going up through �"

In conjunctive patterns routes coming up from the controlling binding will either
continue up through the pattern or go down through the other subpattern. Without loss
of generality, assume that they come up through the �rst subpattern and then continue up
through this pattern or down through the second choice. The match attributes of the context
and the second subpattern are checked and if both the context and the other subpattern
match, attribute equations are activated. Values will come either from the context of the
whole pattern or from the other subpattern:

� ::= �0 & �00

for each (c; i) 2 P (�)
generate

"match ?x=c(?x1,: : :,?xnc) begin

if x.imatch� and x.smatch�00 then

xi.imatch�0 := true;

xi.iid_a�0 := x.iid_a�
for each id.a reached along a route through �0 ! �

xi.iid_a�0 := x.sid_a�00

for each id.a reached along a route through �0 ! �00

endif;

end;"

In the case of a constructor call, the pattern match must take into account all the
match and value attributes arriving from the arguments of the pattern as well as from the
context. Assume that the route from the controlling binding comes up through parameter
i:

� ::= constructor(�1,�2,: : :,�n)

generate

"match ?x=constructor(?x1,: : :,?xn) begin

if x.imatch� and x1.smatch�1 and : : : and x(i�1).smatch�i�1 and

x(i+1).smatch�i+1 and : : : and xn.smatch�n then

xi.imatch�i := true;

xi.iid_a�i := x.iid_a�
for each id.a reached along a route through �i ! �

xi.iid_a�i := xk.sid_a�k
for each id.a reached along a route through �i ! �k ; k 6= i
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endif;

end;"

To handle semantic parameters correctly, this rule would have to be changed not to fetch
attributes such as smatch�k from non-structural values.

A pattern call is a little more complicated. Assume that the route from the binding
comes through the ith parameter. There must not be any bottom-up OCLA-ambiguity with
respect to this parameter. In this case, the correct instance of the parameter binding can
be determined.

� ::= pattern (id1,id2,: : :,idn)�
0(�1,�2,: : :,�n)

for each �0i = ?idi 2 �0

generate

"imatch�0
i
= imatch�i;

iid_a�0
i
= iid_a�i;

for each id.a reached along a route through �i ! �0i"

Recall that recursive calls in pattern de�nitions are replaced by holes (@) when the pattern
is canonicalized (see Section 3.3.3 on page 52). If the pattern is not recursive, then the
value and match attributes from the context are the ones we need in the body. Otherwise,
we must generate new attributes:

� ::= pattern (id1,id2,: : :,idn)�
0(�1,�2,: : :,�n)

if @ 62 �0

generate

"imatch�0 = imatch�;

iid_a�0 = iid_a�;

for each id.a reached along a route through �0 ! �"

else

for each (c; k) 2 P (�)
generate

"match ?x=c(?x1,...?xnc) begin

if xk.imatch� then

xk.imatch�0 := true;

x.iid_a� := x.iid_a�0;

for each id.a reached along a route through �0 ! �

endif;

end;"

for each �@ = @ 2 �0

generate

"imatch�@ = imatch�0;

iid_a�@ = iid_a�0;

for each id.a reached along a route through �0 ! �@"

De�nitions for synthesized attributes are generated for the downward parts of the
routes from the controlling variable binding.
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For pattern variable bindings, a synthesized attribute alias is created for each value
that needs to be fetched from this location and a (constant true) match attribute is similarly
de�ned.

� ::= ?id for non-parameter binding
generate

"attribute Type.smatch� : Boolean := true;

sid_a� = a;

for each id:a needed somewhere"

Since this attribute always gets its default value, any use of xi.smatch� can be replaced
with true.

When all matches are used, semantic conditions are not used to guide the pattern
matching. Instead they are turned into normal if guards inside the body of the match.
Only for case clauses are semantic conditions evaluated during the pattern match. In
this case, semantic conditions use the values coming in and if the values check, de�ne
the match attribute to be true. Semantic conditions require their own match and value
attributes generated similarly, except only along routes from the condition to values used
in the condition.

� ::= if expr only if the match is in a case clause
for each c 2 C(�)

generate

"match ?x=c(...) begin

if x.imatch� then

if expr then where each id:a replaced by x.iid_a�
x.smatch� := true;

endif;

endif;

end;"

The inherited match attribute is tested to ensure that the needed value attributes are
de�ned. If the match is going to fail anyhow because some other part of the pattern didn't
match, the value attributes will not be de�ned. The value of the match attribute will be
ignored in this case, but it is important that evaluating it not cause an error.

In the case of a conjunctive pattern, there may be routes going down into each of
the subpatterns to fetch values from there. The conjunctive pattern only matches if both
subpatterns match.

� ::= �0 & �00

for each c 2 C(�)
generate

"match ?x=c(...) begin

if x.smatch�0 and x.smatch�00 then

x.smatch� := true;

endif;

end;
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sid_a� = sid_a�0;

for every id.a reached along a route through �! �0

sid_a� = sid_a�00;

for every id.a reached along a route through �! �00"

Linearity ensures that the values reached on the two routes are distinct (and thus that the
aliases do not conict). If one of the subpatterns is guaranteed to match (if, for example, it
is a pattern variable), then the match attribute can be made an alias of the match attributes
of the other subpattern.

For a disjunctive pattern, if the �rst choice matches, the value attributes are copied
from there. Otherwise, if the second choice matches, the value attributes are copied from
it:

� ::= �0 | �00

for each c 2 C(�)
generate

"match ?x=c(...) begin

if x.smatch�0 then

x.smatch� := true;

x.sid_a� := x.sid_a�0;

for every id.a reached along a route coming down through �

elsif x.smatch�00 then

x.smatch� := true;

x.sid_a� := x.sid_a�00

for every id.a reached along a route coming down through �

endif;

end;"

If the pattern is top-down OCLA-unambiguous (as must be the case if all matches are to
be used), the sets of constructors for the two sides are di�erent, and one can generate less
code:

� ::= �0 | �00

generate

"x.smatch�0 = x.smatch�;

x.smatch�00 = x.smatch�;

sid_a�0 = sid_a�;

sid_a�00 = sid_a�;

for every id.a reached along a route coming down through �"

For a constructor call, the match succeeds if each of the children match. Each of
the values coming up through the node comes through one of the children (and only one
because of linearity):

� ::= constructor(�1,�2,: : :,�n)

generate

"match ?x=c(?x1,: : :,?xn) begin
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if x.smatch�1 and : : : and x.smatch�n then

x.smatch� := true;

x.sid_a� := x.sid_a�i;

for every id.a reached along a route through �! �i
endif;

end;"

If a route from the controlling pattern goes down through a pattern call, pattern
matching attributes and values for the call come from the body. Each parameter must
have the appropriate match and value attributes de�ned. Similarly for holes in the pattern.
The parameter bindings in the body get their attributes from the actual parameters in the
pattern call. The holes get their attributes from the body. Again if the pattern is not
recursive (there are no holes), more aliases can be used:

� ::= pattern (id1,id2,: : :,idn)�
0(�1,�2,: : :,�n)

if @ 62 �0

generate

"smatch�0 = smatch�;

sid_a�0 = sid_a�
for every id.a reached along a route through �! �0"

else

for each c 2 C(�)
generate

"match ?x=c(...) begin

if x.smatch�0 then

x.smatch� := true;

x.sid_a� := x.sid_a�0

for every id.a reached along a route through �! �0

endif;

end;"

for each �0i = ?idi 2 �0

generate

"smatch�0
i
= smatch�i;

sid_a�0
i
= sid_a�i;

for every id.a reached along a route through �0i ! �i"

for each �@ = @ 2 �0

generate

"smatch�@ = smatch�0;

sid_a�@ = sid_a�0;

for every id.a reached along a route through �@ ! �0"

Once all the transmission attributes are generated it is possible to express every
original attribute de�nition without pattern matching. First all the wrappers are handled.
Pattern matching is ignored, except for semantic conditions in top-level or for patterns;
such conditions are turned into normal if statements. All if statements guarding the
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attribute de�nition remain. Then all expressions (those in the wrapping if's and those on
the right-hand side of the attribute de�nition) are converted: id.a is converted into iid_a?v
where ?v is the controlling pattern variable bound to the node being attributed. Finally
the attribute de�nition itself is generated. If the attribute in question is inherited, one copy
is generated for each position the variable could take:

?v.a := expr;

for each (c; i) 2 P (?v)
generate

"match ?x=c(?x1,: : :,?xnc) begin

if condition1 then

...

if condition! then

xi.a := expr;

endif;

..
.

endif;

end;"

If the attribute is synthesized, the constructor set for the variable is used:

?v.a := expr;

for each c 2 C(?v)
generate

"match ?x=c(...) begin

if condition1 then

...

if condition! then

x.a := expr;

endif;

..
.

endif;

end;"

Since most attributes tend to be synthesized, this generating rule shows the importance of
using conjunctive patterns to trim down constructor sets.

All these rules make the step of generating transmission attributes rather complex,
but the basic issue is simple|the values needed for an attribute de�nition are copied from
node to node until they are in reach of the attribute de�nition that needs them. Similarly,
match attributes ensure that the attribute de�nition is only activated when the tree matches
the guarding patterns.

3.4.5 Collecting

In a traditional attribute grammar, there is only one set of de�nitions for each
production in the grammar. The preceding step has simpli�ed pattern matching so that
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only one constructor is ever being used, but there are still multiple attribution clauses for
each constructor. It is a straightforward task to collect all the match clauses together that
refer to the same constructor. In fact, collection can be done during generation.

3.4.6 Simplifying

The canonicalization steps mentioned in this section produce a verbose attribute
grammar with many arti�cial attributes expressing ordering or pattern matching. Once the
attribute equations are all collected together, a number of simpli�cations can be attempted.

Many of the match attributes will always be true. For example the inherited
attribute to the top of a pattern will always be true. Similarly, synthesized match attributes
for pattern variables are always true. In these cases, one can replace uses of the attributes
by the value true and often further simplify the expression in which this use occurs.

One can also use a form of \copy propagation" to substitute the values of attributes
whose de�nitions are known and do not involve any computation.

3.5 Summary

Pattern matching is powerful tool, and an important method for factoring a de-
scription by concept. APS has a powerful linear pattern matching facility that through
named pattern de�nitions allows patterns themselves to be factored as well. Pattern match-
ing can be added to the attribute grammar formalism assuming a good conict resolution
rule is chosen. Descriptions using pattern matching can be converted to conditional at-
tribute grammar form through a canonicalization described in the last section of this chap-
ter.
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Chapter 4

Sequences

This chapter introduces the concept of sequences and describes how support for
sequences can ease the task of writing descriptions, reduce dangerous redundancy, and
possibly even permit e�cient parallel or incremental evaluation.

The chapter discusses issues that arise when including sequences in a formalism
with attribution. Then it describes how sequences and their generalization, collections, are
supported in APS and how they are integrated with expressions and pattern matching.
The chapter concludes with a description of the implementation of sequences, how sequence
patterns can be converted into uses of pattern de�nitions, and how sequence expressions
can be converted to simpler expressions.

4.1 Why Sequences?

When describing the structure of a formal entity (such as a string of a program-
ming language), it is often intuitive to speak of arbitrary length sequences (perhaps with
separators). For example, one might say that a block is the keyword begin followed by zero
or more statements followed by the keyword end. This description can be written formally:

block ! begin statement� end

However, many formal language tools lack a fundamental concept of a sequence and so the
previous rule would be syntactic sugar for the following set of rules:

block ! begin statement-list end

statement-list !
! statement statement-list

Sometimes the tool does not even provide syntactic sugar, and the description must be
written without using any explicit notion of sequencing.

If the formalism does not support sequences, not even with syntactic sugar, a
description writer must generate dreary boilerplate every time a sequence is needed. More-
over, if the formalism does not provide generic operations such as append, nth or map, then
again the description writer must rewrite such functionality from scratch. Therefore, the
lack of support for sequences may increase the dangerous redundancy of a description.
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But syntactic sugar is not su�cient to get all the bene�ts of sequences. If sequences
or, more generally, collections are treated as a fundamental data type by a formalism, more
implementation techniques may apply. For example, languages with primitive support for
collections may be more easily parallelizable [85].

Another example comes from research in incremental attribute grammar evalua-
tors. If a sequence is treated as mere syntactic sugar for a left-heavy or a right-heavy tree of
the elements in the sequence, the height of a tree will be at least as great as the length of the
longest sequence in the tree. Since programs rarely are deeply nested but often have long
sequences (of declarations at the top-level, or of statements in a procedure), a left-heavy
or right-heavy tree for sequences will greatly add to the height of the tree. Incremental
re-evaluation algorithms for attribute grammars work best when the height of the tree is
limited (see for example, Vogt and Swiestra's work [92]). If some form of balanced tree
is used to represent the sequence, the sequence will only contribute logarithmically to the
height of the tree. Using balanced sequences can therefore improve incrementality.

Therefore, sequences should be supported by a formalism, not only through syn-
tactic sugar in order to avoid dangerous redundancy, but also as a fundamental data type
that admits sophisticated implementation techniques, such as needed for parallelism or
incrementality.

4.2 Attribution with Sequences

If sequences of tree nodes are present in an attribute grammar-like formalism,
various issues arise. Can sequences or partial sequences be attributed? How can attributes
of the children of sequence be used by the parent? How can elements of the sequence use
attributes of the parent or of each other?

If sequences are merely syntactic sugar for some left-heavy, right-heavy or even
balanced tree representation, any form of attribute ow supported for normal nodes is
possible. Typically however, attribute ows in sequences fall in one of the following four
patterns:

1. broadcast a value to all members of the sequence

2. collect a value from each member using some (associative) combining function

3. start with a value and give it to the �rst member of the sequence. Each member
accepts a value and produces a new value. This new value is given to the next
member and the last member returns it to the parent (bucket-brigade left-to-right)

4. bucket-brigade right-to-left

For example, if the sequence is represented as a balanced tree of elements, each
sequence node has one of three forms:

seq0 ! seq1 seq2

seq ! element

seq !
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X ! : : : seq : : :

seq.value = value to broadcast

seq0 ! seq1 seq2

seq1.value = seq0.value

seq2.value = seq0.value

seq ! element

element.value = seq.value

seq !

(a) broadcast a value to all children

X ! : : : seq : : :

: : : = : : : seq.value : : :

seq0 ! seq1 seq2

seq0.value = f(seq1.value,seq2.value)

seq ! element

seq.value = element.value

seq !

seq.value = identity

(b) collect using combining function f, with identity identity

X ! : : : seq : : :

seq.before = starting value

: : : = : : : seq.after : : :

seq0 ! seq1 seq2

seq1.before = seq0.before

seq2.before = seq1.after

seq0.after = seq2.after

seq ! element

element.in = seq.before

seq.after = element.out

seq !

seq.after = seq.before

(c) bucket-brigade left to right

Figure 4.1: Idioms for expressing 3 attribution ows for a balanced sequence representation.
The fourth attribution ow (bucket-brigade right-to-left) is analogous to the third (bucket-
brigade left-to-right).



76

A sequence of the �rst form is split into nearly equally large subsequences. A sequence
of the second form has but one element. The third and last form is the empty sequence.
The idioms in Figure 4.1 may be used to execute the four attribute ows. The idioms for
left-heavy and right-heavy trees are similar, even simpler, as there are only two forms for
each sequence node.

In the idioms given, there is no redundancy in the concept. For instance, in Fig-
ure 4.1(b) the combining function must be given only once and the identity value similarly
only once. On the other hand, the idioms need a lot of \boilerplate" to get the values
to where they are needed. A formalism can help make a description less cluttered and
less error-prone if this boilerplate can be generated automatically. LIGA [57] has a CHAIN

declaration for specifying bucket-brigade attributions precisely for this reason.

If the semantics of a sequence are such that it has a particular structure, then it
may be necessary to overspecify computations on the sequence. For example, if a left-heavy
representation is used, and a \collect" attribute ow is de�ned using this decomposition, the
combining function will only be used in a left-associative manner. Before an implementation
program can apply a transformation to improve incrementality that relies on the function
being associative, the program must ensure that indeed it is associative. When on the
other hand, combining functions are required to be associative, it is easier to optimize the
description.

When the intermediate sequence nodes cannot be attributed|that is, if the se-
quence is not sugar for a particular representation|the formalism must provide mechanisms
to accomplish at least the preceding four attribute ows. It is better if the formalism does
not require dangerous redundancy; that is require the combining function of the default
value to be speci�ed more than once (without checking). The �rst two attribute ows
(broadcast and collect) are usually the easiest to support. It is more di�cult to support
bucket-brigades.

The Olga language in the FNC2 system represents sequences implicitly and pro-
vides a form of case analysis for the sequence [54]. This case analysis can be used to express
a bucket-brigade. If one does not use Olga's equivalent of LIGA's CHAIN declaration, a left-
to-right bucket-brigade can be expressed as follows: (This syntax is generic, the fragment
is not legal Olga code.)

X ! : : : seq : : :

for each elem 2 seq

elem.in = if is_first(elem) then starting value

else previous(elem).out

ending value = if is_empty(seq) then starting value

else last(seq).out

This fragment avoids some of the boilerplate that occurs in a formalism with no primitive
support for sequences. On the other hand, it is necessary to state the starting value twice.
It is also necessary to specify the out attribute for elements more than once. If a change
was made in one place but not in the other, the inconsistency may not be found easily.
The idioms in Figure 4.1 that operate directly on an exposed balanced tree representation
do not have this problem. The before and after attributes for sequences did have to be
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speci�ed multiple times. This redundancy, however, was in the boilerplate, rather than here
where it is more part of the concept.

In summary, if the representation of a sequence is exposed and if attributes may be
placed on the intermediate sequence nodes, the description writer has complete freedom to
specify an attribution ow. On the other hand, this power may lead to overspeci�cation of
a problem. Thus in order to allow optimization, a formalism may hide the representation of
sequences, and require the description writer to use primitive sequence operations. However,
such an approach has two dangers: the primitives may not be powerful enough to handle
what the description writer needs for a concept, and the primitives may lead to dangerous
redundancy.

4.3 Sequences and Collections in APS

In APS, sequences are supported primitives but the representation is (mostly) ex-
posed. A sequence is treated as just one kind of collection. Other collection types supported
in APS are lists, bags, sets and multi-sets. All the collection types share a \comprehension"
syntax similar to that used in SETL [83], Miranda or Haskell and also share a pattern
syntax. This section introduces the various collection types and then sequences per se.
Next this section explains the pattern matching syntax and �nally the more complicated
comprehension syntax.

4.3.1 Collections

APS provides a class (that is, a generic interface) named \COLLECTION" and a
number of concrete modules that ful�ll it: BAG represents unordered collections of values
where duplicates are permitted; SET represents unordered collections without duplicates;
ORDERED_SET represents collections kept in sorted order without duplicates; LIST represents
ordered collections and are similar to sequences except without object identity.

type BagOfIntegers := BAG[Integer];

type SetOfIntegers := SET[Integer]((=));

type OrderedSetOfIntegers := ORDERED_SET[Integer]((=),(<));

type ListOfIntegers := LIST[Integer];

(In APS, type and phylum parameters are enclosed in square brackets [ ].) A bag type need
only specify the type of the elements in the bag. A set type must also specify an equality
operation to be used to determine whether two elements are the same for the purposes of
the set; the function may be user-de�ned. Ordered sets need a comparison function as well.
Operations for ordered sets can be implemented more e�ciently than for general sets.

A special module, SEQUENCE, also ful�lls the COLLECTION signature. More precisely,
it ful�lls the READ_ONLY_COLLECTION signature. The only major di�erence to the description
writer is that type inference cannot be used to infer the type of a comprehension (see
Section 4.3.3). The SEQUENCE module is used to create sequence phyla, such as seen in
Chapter 2:

phylum Modules=SEQUENCE[Declaration];
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Here Modules is declared as sequence phylum. The representation of sequences is exposed,
a sequence is constructed using three constructors: append, single, and none. This repre-
sentation permits (but does not require) the sequence to be balanced.

4.3.2 Pattern Matching Collections

In APS, sequences (as well as other collection types) may be matched using a
special pattern syntax. This syntax allows individual elements to be matched, but does
not expose any of the internal nodes used in the representation of the collection type. A
collection pattern consists of zero or more separated collection subpatterns separated by
commas:

pattern ::= : : : j { sub�, }

A subpattern may be a normal pattern, in which case it applies to a single element. Al-
ternatively, it may be three dots (...) with an optional element pattern (preceded by the
keyword and). In this case, the subpattern represents zero or more elements that each must
match the element pattern if one is given.

sub ::= pattern j ... j ... and pattern

Any variable bindings in the element pattern are ignored elsewhere.
An example of pattern matching sequences comes from the static check module in

Appendix B.5:

attribute Declaration.proc_is_local : Boolean := false;

match proc_decl(body:=block(decls:={...,?d=proc_decl(...),...})) begin

d.proc_is_local := true;

end;

The ... performs two purposes in this fragment. The ... in the pattern proc_decl(...)

means that the children of the proc_decl node are ignored; it is not a sequence pattern.
The other instances of ... concern sequence pattern matching: each of the ... sections
in the pattern {...,?d,...}. can stand for any number of declarations. The pattern
variable d thus may be bound to any of the declarations in the list. The pattern further
restricts the binding to procedure declarations. Thus d could be bound to any of the local
procedure declarations in a procedure block. Since this fragment is a top-level pattern
match, all matches are used. Thus any local procedure declaration gets the value true for
its proc_is_local attribute.

Collection patterns may appear wherever patterns are expected. For example,
there is no restriction on nested collection patterns:

pattern case_label(e : Expression) : CaseLabel

:= single_label(?e),range_label(?e,?),range_label(?,?e);

match case_stmt(?sub,{...,case_clause({...,case_label(?e),...},?),...},?)

begin

make sure e has the same type as sub

end;
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For any value in a case label of any clause in a case statement, its type must be the same
as the type of the expression being tested. There are three places where there are multiple
possibilities in the match. For the case statement, a clause is chosen. Next for that clause,
a label is chosen. Finally, if that label is a range, either the start or the end is chosen.

Later in the same module as the previous example, a check is made that a case
label does not repeat one that came before. A simple way to do this check is to match any
two labels and ensure that they do not have the same value:

match {...,single_label(?e1),...,?lab2=single_label(?e2),...}

begin

if e1.constant_value = e2.constant_value then

generate an error message

endif;

end;

The de�nition of OCLA-ambiguity given in Section 3.3.3 is extended to apply
to collection patterns: a collection pattern is top-down OCLA-ambiguous if there is more
than one list subpattern (... or ... and pattern); a subpattern in a collection pattern is
bottom-up OCLA-ambiguous if there are more than two list subpatterns or if there are two
and the subpattern is not between them. For instance, the �rst example from this section
is top-down OCLA-ambiguous because there are two list subpatterns:

{...,?d=proc_decl(...),...}

However, the subpattern ?d=proc_decl(...) is not bottom-up OCLA-ambiguous, because
it lies between the two list subpatterns. The second example has two collection patterns.
Both are top-down OCLA-ambiguous and in neither case is the sole non-list subpattern
bottom-up OCLA-ambiguous:

{...,case_clause({...,case_label(?e),...},?),...}

The third example has three list subpatterns and so it is top-down OCLA-ambiguous and
every subpattern is bottom-up OCLA-ambiguous:

{...,single_label(?e1),...,?lab2=single_label(?e2),...}

As a result, the binding of lab2 is nowhere OCLA-controlling.

4.3.3 Collection Comprehensions

Values of a collection type may be created using a polymorphic constructor: { }

with a powerful comprehension notation. For example:

b : BagOfIntegers := {1,2,3,4,5,4,3,2,1};

s1 : SetOfIntegers := {x for x:Integer in b};

s2 : SetOfIntegers := {0, s1...};

o : OrderedSetOfIntegers := {x+1 if odd(x) for x:Integer in b};
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The �rst case simply builds a bag of nine integers. The second case builds a set with all
the elements of b (from which duplicates are removed). The third case builds a set from
another set plus zero. The fourth case has a conditional, odd(x), used to control entry into
the set. The resulting set will be {2,4,6}.

More formally, a comprehension consists of zero or more comprehension subex-
pressions separated by commas:

expr ::= : : : j { comp�, }

Each comprehension subexpression is either a simple expression or an instance of a sequence
expression:

comp ::= expr j seq

seq ::= expr...

j comp if expr

j comp for id:type in expr

j func(seq1,seq2,: : :,seqn) n > 0

A simple expression is simply included in the resulting collection. The �rst form of sequence
expression includes all the elements of a collection in the result. The second form either
adds or ignores the collection built by the comprehension depending on the boolean value
of the expression. The third form adds a collection for each element of another collection.
The scope of the identi�er is the comprehension subexpression comp. Specifying the type
for the formal is optional. The last form of a sequence expression is an implicit map of a
function over arguments of a sequence. If the function has one argument, it is applied to
each element of its sequence argument. If there is more than one sequence, there must exist
a collection c and each sequence must have one of the forms:

c...

comp for id:type in c

func(seq 01,seq
0
2,: : :,seq

0
m) n > 0

where each seq0j must also have one of the preceding forms. In this case, the implicit map
can be trivially rewritten into the form:

func(expr1,expr2,: : :,exprn)

for tmp in expr

where each expr is an ordinary (non-sequence) expression using tmp.
The comprehension notation is polymorphic; it is valid for any collection type. The

APS compiler infers the correct type for the comprehension. If no type can be inferred,
an error is reported. The type may be given explicitly by preceding the comprehension
with collection-type$. The basic Algol scope module used in the Oberon2 compiler has a
complicated example of a comprehension:

private type SortedDecls := ORDERED_SET[remote Decl]((==),(<<));

var function find_local_decl(name : Symbol; scope : remote Contour)
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: remote Decl

begin

case SortedDecls${decl if decl_name(decl) = name

for decl in scope.local_decls}

begin

match {?first,...} begin

result := first;

end;

else

result := Decl$nil;

end;

end;

The type SortedDecls is an ordered set of Decls (ignore the equality and ordering
relations for now). The case statement forms the set of all decls from the contour's local
declaration list whose name matches the name being searched for. If this set has a �rst
element (that is, if it has any elements), this value is returned, otherwise a nil pointer is
returned.

4.3.4 Attribution

All four attribution ows are supported in APS. For example, to broadcast a value
to all children of a sequence, one may use a sugared form of for:

match ?p=funcall(?,?args) begin

for a : Expression in args begin

a.scope := p.scope;

end;

end;

This fragment broadcasts a scope attribute to all children of a function call. The for \loop"
is sugar for the following form that uses the { } notation:

match ?p=funcall(?,?args) begin

for args begin

match {...,?a,...} begin

a.scope := p.scope;

end;

end;

end;

As this transformation demonstrates, there is no notion of a loop with control going around
it; the sugared for is simply a shorthand for a non-deterministic pattern match.

A collecting attribute ow can be accomplished with an implicit reduction over
the sequence of children using a special syntax. If one of the arguments to a binary function
is a sequence expression, then this argument represents a series of values that the function
is to reduce. The base case is the other argument. Reduction starts from the right if the



82

second argument is the sequence expression, otherwise it starts from the left. Since and is
a binary function written as an in�x operator, it can be used to reduce lists of booleans.
The following example comes from Appendix B.4:

-- a function call is constant if its function is constant

-- (in this case, "constant" means "predefined")

-- and each of its arguments is constant.

match ?e=funcall(?func,?args) begin

e.expr_constant := func.expr_constant and

(arg.expr_constant for arg in args);

end;

The sequence expression (arg.expr_constant for arg in args) is the second
operand to and and computes a boolean value for each argument to the function call. The
preceding fragment is equivalent to

match ?e=funcall(?func,?args) begin

e.expr_constant := func.expr_constant and

(arg1.expr_constant and

(arg2.expr_constant and

...

argn.expr_constant

..
.

)

)

This reduction notation is powerful and convenient, but it overspeci�es reductions done
with an associative function, because one must choose either a left associating or a right
associating reduction.

Bucket-brigades can be thought as an unbounded number of attribute de�nitions
sharing most of the same structure. For example, a left-to-right bucket-brigade conceptually
has the form:

X ! seq

seq1.in = X.start

seq2.in = seq1.out

...

seqn.in = seqn�1.out

X.result = seqn.out

In APS, comprehension subexpressions may be used in attribute de�nitions. The preceding
example is expressed as follows:

match ?x=con(?seq) begin

elem.in for elem:Element in seq, x.result :=

x.start, elem.out for elem:Element in seq;

end;
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(where con is the name of the constructor corresponding to the production X ! seq). As
with the hand-written idiom for de�ning bucket-brigades, but unlike the Olga example, this
fragment does not duplicate any conceptual elements (the starting value, the in and out at-
tributes for each element, and the receiver for the result). The sequence must be duplicated,
but the APS compiler checks that the comprehensions are over the same sequence.

As described in this section therefore, APS provides an intuitive notation (using
braces { }) to create collections and to express patterns. It is possible to express all four
attribution ows without dangerous redundancy. The representation of SEQUENCE phyla is
exposed to allow attribution, but the representation of the other types is hidden.

4.4 Implementation

Currently the APS compiler implements all collections as (potentially balanced)
trees with three constructors: append, single and none. The special collection syntax
for pattern matching, expressions and attribution is transformed into simpler forms. This
section describes the transformations used.

4.4.1 Implementing Collection Patterns

Complicated collection patterns are transformed into pattern de�nitions. These
pattern de�nitions handle any form the tree may be in, balanced or otherwise. For example,
they handle trees in which none() nodes are appended to other partial sequences. This
property is essential to enable descriptional composition.

Collection subpatterns can have any of the following forms:

...

... and pattern

pattern

The �rst two are called sequence subpatterns . A collection pattern is converted into a
pattern de�nition call with parameters for each of the non-list subpatterns. The pattern
de�nition body is constructed by determining how the sequence could be represented.

First, if none() is valid, it is added as a choice in the pattern de�nition body. This
pattern is valid only when there are only sequence subpatterns. Next, if a single pattern is
valid, it is added. This pattern is valid when there is one non-sequence subpattern, in which
case the argument is this subpattern. It is also valid when there are only sequence subpat-
terns, in which case it has the form single(?) if the subpatterns include ..., otherwise
there is one single pattern for each subpattern ... and pattern.

Finally all the choices for append are added. The sequence pattern may be split
anywhere not next to a sequence subpattern, or it may split in the middle of a sequence
subpattern. For example, the following sequence pattern has four places where it could be
split:

{ ?f1,?f2,... and m(),?f3,...}

| | | |
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These places yield the following choices for the pattern de�nition body:

append({},{?f1,?f2,... and m(),?f3,...}),

append({?f1},{?f2,... and m(),?f3,...}),

append({?f1,?f2,... and m()},{... and m(),?f3,...}),

append({?f1,?f2,... and m(),?f3,...},{...})

The �rst and fourth cases will end up including a (bottom-linear) recursive call to the
pattern de�nition.

Now that the pattern de�nition body is de�ned, the collection patterns in the
body must be replaced. The algorithm remembers previously generated pattern de�nitions
to avoid in�nite recursion. See Figure 4.2 for the �nal set of resulting pattern de�nitions
for the example. If instead of extending the de�nition of OCLA-ambiguity for sequences,
the de�nition operated on the implementation of sequences, ?f3 would not be OCLA-
controlling. A di�erent implementation of sequences would lead to a di�erent de�nition of
OCLA-ambiguity for sequences. It was to avoid this state of a�airs that OCLA-ambiguity
was extended to operate directly on collection patterns.

4.4.2 Implementing Comprehensions

Collections are created using the { } notation. This comprehension notation can
be converted to simpler expressions including uses of generated function de�nitions. First,
the top-level { } notation is converted into nested calls to append the comprehension results.

Assume that type inference has been done for every comprehension yielding a pre�x
type$ for every comprehension. LetE be the function that implements comprehensions using
expressions. It takes two parameters, the sequence expression and a list of implicit mapping
functions (given in angle braces (h: : :i); see the end of this section for the purpose of this
parameter):

expr ::= type${ seq*, }

expr)

"type$append(E(seq1)(hi),type$append(E(seq2)(hi),: : :E(seqn)(hi): : :))"

Each kind of sequence is translated according to its own rule. A single element is placed in
a collection (after applying any map functions)

seq ::= expr

E(seq)(hm1; : : : ; mni) = "type$single(m1(: : :(mn(expr)): : :))"

Including all the elements of a collection is easy if it has the same type as the collection
being created (and it is not involved in any implicit maps). The whole collection can be
used directly. Otherwise the post�x ... syntax is treated as sugar for a trivial map over
the elements of the collection:

seq ::= expr...

if expr-type is the same as type and m = hi

E(seq)(m) = E(expr)(m)
else

E(seq)(m) = E(tmp for tmp in expr)(m)
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-- {?f1,?f2,... and m(),?f3,...}

pattern pXXAXD(f1,f2,f3 : Element) : Collection =

append(p(),pXXAXD(?f1,?f2,?f3)),

append(pX(?f1),pXAXD(?f2,?f3)),

append(pXXA(?f1,?f2),pAXD(?f3)),

append(pXXAXD(?f1,?f2,?f3),pD());

pattern p() : Collection = -- {}

none(),

append(p(),p());

pattern pX(f1 : Element) : Collection = -- {?f1}

single(?f1),

append(p(),pX(?f1)),

append(pX(?f1),p());

pattern pXAXD(f2,f3 : Element) : Collection = -- {?f2,... and m(),?f3,...}

append(p(),pXAXD(?f2,?f3)),

append(pXA(?f2),pAXD(?f3)),

append(pXAXD(?f2,?f3),pD());

pattern pXA(f2 : Element) : Collection = -- {?f2,... and m()}

single(?f2),

append(p(),pXA(?f2)),

append(pXA(?f2),pA());

pattern pA() : Collection = -- {... and m()}

none(),

single(m()),

append(pA(),pA());

pattern pAXD(f3 : Element) : Collection = -- {... and m(),?f3,...}

single(?f3),

append(pA(),pAXD(?f3)),

append(pAXD(?f3),pD());

pattern pD() : Collection = -- {...} a simpler de�nition is possible, of course
none(),

single(?),

append(pD(),pD());

pattern pXXA(f1,f2 : Element) : Collection = -- {?f1,?f2,... and m()}

append(p(),pXXA(?f1,?f2)),

append(pX(?f1),pXA(?f2)),

append(pXXA(?f1,?f2),pA());

Figure 4.2: Pattern de�nitions that implement f?f1,?f2,... and m(),?f3,...g
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Since APS does not have if expressions, an out-of-line if statement is generated that com-
putes the result into a newly generated local value tmp. Any further out-of-line generations
will be placed in the branch with the assignment:

seq0 ::= seq1 if expr

generate

"tmp : type;

if expr then

other out-of-line additions

tmp := E(seq1)(m);
else

tmp := type$none();

endif;"

E(seq0)(m) = "tmp"

A for comprehension is converted into a call of a function that explicitly traverses the
structure of a sequence:

seq0 ::= seq1 for id : element-type in expr

generate

"function map_tmp(s : expr-type) : type begin

case x begin

match expr-type$append(?s1,?s2) begin

result := type$append(map_tmp(s1),map_tmp(s2));

end;

match expr-type$single(?id) begin

other out-of-line additions

result := E(seq1)(m);
end;

match expr-type$none() begin

result := type$none();

end;

end;

end;"

E(seq0)(m) = "map_tmp(expr)"

An implicit map is converted by adding the mapping function to the list:

seq ::= func(seq)

E(seq0)(hm1; : : : ; mni) = E(seq1)(hm1; : : : ; mn;funci)

4.4.3 Reductions

Reductions are similarly implemented, with the additional complexity of a reduc-
tion function. Let R be the function that implements (right) reductions. This section shows
how R is de�ned. Left reductions are analogous.
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expr0 ::= func(expr1,seq)

expr0 ) R(func;expr1;seq)()

A simple expression treated as part of a sequence is handled as a base case:

seq ::= expr

R(f; i; seq)(hm1; : : : ; mni) = "f(i,m1(: : :(mn(expr)): : :))"

Reducing over a whole collection is handled as sugar:

seq ::= expr...

R(f; i; seq)(m) = R(f; i;tmp for tmp in expr)(m)

As with comprehensions, if sequences lead to out-of-line code being generated:

seq0 ::= seq1 if expr

generate

"init : init := i;

tmp : type;

if expr then

other out-of-line additions

tmp := R(f;init; seq1)(m);
else

tmp := init;

endif;"

R(f; i; seq0)(m) = "tmp"

A for reduction is converted into a call of a function that explicitly performs the reduction:

seq0 ::= seq1 for id : element-type in expr

generate

"function reduce_tmp(init : type; s : expr-type) : type begin

case x begin

match expr-type$append(?s1,?s2) begin

result := reduce_tmp(reduce_tmp(init,s1),s2);

end;

match expr-type$single(?id) begin

other out-of-line additions

result := R(f;init; seq1)(m);
end;

match expr-type$none() begin

result := init;

end;

end;

end;"

E(seq0)(m) = "reduce_tmp(i,expr)"

As with comprehensions, an implicit map is converted by adding the mapping function to
the list:
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seq ::= func(seq)

R(f; i; seq0)(hm1; : : : ; mni) = E(f; i; seq1)(hm1; : : : ; mn; funci)

The overspeci�cation of the form of the reduction (left versus right) means that
a special check to test for associative reduction functions is necessary before one can use a
better implementation technique for reductions (one that, say, does not use up an amount
of stack linear in the length of the collection, as the translation given here does).

4.4.4 Attribution

Broadcast attribution uses pattern matching. After the collection pattern is con-
verted into pattern de�nitions, broadcast attribution no longer uses anything special. A
collecting attribution is expressed as a reduction and is implemented as such. The last two
cases, bucket-brigades in either direction, can be translated using the bucket-brigade idiom
given in Figure 4.1.

4.5 Summary

The concept of a sequence often crops up when describing programming languages.
Support for sequences relieves a description writer from writing sequence boilerplate. It also
reduces dangerous redundancy.

In an attribute grammar-like formalism, it is important to support at least the
following attribute ows: a broadcast from the parent to all children, a reduction over
values for each child and also communication between each child and its nearest neighbors.
In APS, sequences and more generally, collections, are provided with powerful pattern
matching and comprehension notations. Internally, collections are represented as balanced
trees, and all the attribution ows are supported without requiring dangerous redundancy.
Collection patterns and collection comprehensions can be translated into simpler patterns
and expressions.
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Chapter 5

Higher-Order Features

The nodes of a tree being attributed can be viewed as attribute values themselves.
This chapter investigates the rami�cations of this deceptively simple idea.

For example, when building a symbol table, rather than create a record to store
information about a declaration, it may be easiest simply to store a reference to the dec-
laration node itself. Then at the point of a use, the symbol table lookup function could
return this reference. Depending upon whether the formalism permitted such actions, one
could then traverse the subtree rooted at the node referred to, or even query or de�ne its
attributes. As long as the tree (or attributes decorating it!) provides information in a useful
form, the ability to use node references may simplify a description.

Sometimes, however, the structure of the tree being attributed is more complex
than necessary for some task. In this case, it may be useful to create a simpli�ed form of the
tree and then carry out the task on this new structure. The results could then be used in
other tasks. Compilers often create all sorts of auxiliary data structures: symbol tables, use-
def chains, or control ow graphs, just to name a few. Not all of these structures are trees,
but still they can be viewed as alternate (possible simpli�ed) representations of the program
being compiled. Compilation algorithms are often easier to express on a representation of the
program that makes explicit certain relevant properties of the program and omits irrelevant
aspects. The ability to de�ne a simpli�ed view of a tree thus aids factoring.

A translation in a compiler can be described using the same facilities. A translation
from one intermediate form to another is a computation that reads in a tree and produces a
new tree. Chapter 1 argued the bene�ts of describing compilation as a series of translations,
each performing a small step towards the �nal goal of machine language. By splitting up
the task in this way, the various parts of the compiler are more easily reusable and are more
resilient to change.

This chapter explores these and other ways in which tree nodes may be treated
as values. Because attributes are associated with tree nodes, the ability to store references
to nodes in attributes is known as higher-order attribution. Section 5.1 describes previous
uses of higher-order features in attribution systems. The issues that arise when de�ning the
meaning of higher-order features in the context of attribute grammar-like formalisms are
discussed in Section 5.2. In Section 5.3 the support for such features in APS is described
and in Section 5.4 the implementation is sketched.



90

5.1 Higher-Order Features in Attribute Grammars

This section describes higher-order features appearing in the literature and the
purpose for which they were used.

Ganzinger and Giegerich's attribute-coupled grammars (ACGs) [39, 41] were the
�rst to use attribute grammars to describe tree translations. An attribute-coupled grammar
is simply an attribute grammar that computes a tree using productions in another grammar
as node constructors. Ganzinger and Giegerich were also the �rst to investigate the bene�ts
of descriptional composition. In attribute-coupled grammars, the output tree could only
be attributed once attribution was �nished for the input tree; there was no possibility of
communicating information back from the second attribution to the �rst. As a result,
attribute-coupled grammars were only useful for translation, not for producing simpli�ed
versions of the tree.

A related formalism is Vogt, Swiestra and Kuiper's higher-order attribute gram-
mars (HOAGs) [92, 96]. Subtrees may be created and then grafted into the tree being
attributed. At this point, the newly added subtree may likewise be attributed. One may
view HOAGs as a generalization of ACGs in that ACGs describe translations of whole trees
at a time whereas in HOAGs a translation can be done for a subtree at a time [92].

Farrow, Marlowe, and Yellin's composable attribute grammars (CAGs) [36] take a
di�erent tack. In CAGs, trees may be created that abstract properties in the original tree.
In a similar vein, Farnum's optimizer used derived nodes to build a control-ow graph [29].
In either system, the new nodes may be attributed at their creation and attributes may be
read from the nodes. These capabilities require node identity and thus it is important that
trees are built rather than DAGs. In order to be able to ensure this property statically, a
CAG compiler must use a restriction similar to that used to enable descriptional composition
in ACGs.

Hedin's Door Attribute Grammars [46] permits nodes to be closely associated with
\door objects," whose references may be used as values during attribution. Attributes of
the door objects may be read or de�ned through the references, thus inducing long-range
dependencies. Hedin showed that this extension not only simpli�ed the speci�cation but
also led to a more e�cient incremental implementation.

Interestingly, there has been little if anything published about treating the nodes
in an attributed tree as values. The ability to pass around references to nodes and then
to fetch attributes from the nodes is convenient for building symbol tables. Section 5.3.6
shows that treating nodes from the attributed tree as values can be reduced to creating and
attributing derived nodes as in Farnum's DORA system and in CAGs.

5.2 Issues in Higher-Order Features

When the ability to operate upon tree nodes is added to a formalism, such as
an attribute grammar, in which tree nodes induce equations, there are bound to be some
complications. This section examines questions, the answers to which profoundly a�ect the
ways in which nodes can be used, and the ways in which the features can be implemented.
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5.2.1 Do Nodes Have Identity?

One important issue is whether nodes have identity. The issue arises when one
seeks to distinguish a tree from a directed acyclic graph (DAG). In a tree, each node has at
most one parent; in a DAG, nodes may have multiple \parents" (also known as \predeces-
sors"). If the nodes returned by a constructor have object identity, then constructor calls
are not referentially transparent. That is, if results of dynamic calls to constructors can be
distinguished, then it makes a di�erence whether a constructor is called once and the result
used in two places or called twice with the same arguments.

If two nodes that root isomorphic subtrees are indistinguishable, it is not possible
in general to fetch attributes from a node passed in an attribute value (see Section 5.2.2),
because attributes in general may depend on the context. Thus the presence or absence
of node identity makes a great di�erence in expressiveness. In HOAGs, node identity is
absent; subtrees are simply viewed as mappings from inherited attributes to synthesized
attributes. Attributes may only be computed for subtrees once they have been rooted in a
location and attributes may never be fetched from nodes treated as values. Conversely, in
CAGs, attributes may be fetched from nodes treated as values.

On the one hand, referential transparency is a useful property because it makes
it easier to transform a program. On the other hand, node identity adds expressiveness to
a language. It also permits the useful distinction between trees and DAGs. Node identity
can of course be simulated in a referentially transparent language, but at the source-level,
constructor calls are either referentially transparent or they are not.

5.2.2 May Attributes Be Read?

As mentioned in the previous section, being able to read attributes of nodes passed
as values requires that nodes have identity. The ability to read attributes also complicates
the dependency graph. Many e�cient evaluation mechanisms have been developed for
attribute grammars, exploiting the fact that in classical attribute grammars, all (direct)
dependencies are between neighboring nodes in the parse tree. The ability to form di-
rect remote dependencies makes the dependencies much harder to analyze. Johnson and
Fischer's non-local attribute grammars require hand-written annotations that inform the
attribute scheduler of the kinds of remote dependencies that are possible [50]. More recently,
Farrow has proposed an analysis to automate the scheduling [35]. This work has been ex-
tended speci�cally to handle remote attribute access of attributed nodes [11]. Maddox has
implemented a corrected version of Farrow's �ber analysis [70].

5.2.3 May Attributes Be Written?

In HOAGs, the inherited attributes for a grafted subtree may be written. In
CAGs, the input attributes of a node are de�ned by the attribution rule that creates it.
Input attributes are associated with nodes like other attributes, but are de�ned by the rule
that creates the node, not by rules that match its structure. It is not necessary that the
creation of the node and the de�nition of its input attributes occur at the same time during
attribution.
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In both HOAGs and CAGs, attributes may only be written in these restricted
situations. Since HOAGs preclude node identity, there would be no other way to write
attributes anyway. But even in CAGs, where node identity is used, attributes may only be
written for nodes in the attribution rule where they are created. Allowing writes in any
rule where a reference to a node is available runs into problems. It is much more di�cult, if
not impossible, to guarantee statically that an attribute will receive only a single de�nition.
Even lexical ordering is not su�cient to avoid conict since the the same attribute de�nition
may be instantiated multiple times in a tree. There is no guarantee that the node used in
each de�nition will be di�erent. The problem is similar to that for non-controlling bindings,
as described in Chapter 3. Only if there is some way to resolve multiple de�nitions cleanly,
can unrestricted writes be well de�ned.

5.2.4 Can Cyclic Structures Be Built?

Many useful structures in compilers are cyclic. For example, symbol tables often
have cyclic entries for representing self-referential types such as

TYPE Node = RECORD

item:INTEGER;

next:POINTER TO Node;

END;

Since Node is a record type that refers to itself, the symbol table entry for Node will be
a structure that also refers to itself. The cycle can be cut by representing pointer types
specially, but this �x makes things more di�cult for the description writer. Such a �x must
be carefully described and a new �x is needed for every potentially circular structure. If
cycles are forbidden, neither call graphs nor control ow graphs can be represented naturally,
to name a few common cyclic structures.

If a constructor is lazy, that is, if it can return a valid value before all the arguments
are ready for evaluation, then creating cycles is straightforward. Augusteijn has proposed
a similar, if less general, solution: one may mark certain actual parameters as lazy [7].
Otherwise, the possibly cyclic edges must be added later. In Olga, a limited form of side-
e�ecting assignment is permitted to �x the parameter to a constructor for the purpose of
building cyclic structures [53].

A di�erent way to accomplish the e�ect of cyclic structures is to use CAG-style
input attributes. This method entails assigning attributes to the nodes after they have been
created. If a formalism (for example, APS) has both constructor arguments (arguments used
to create the node in the �rst place) and input attributes, and pattern matching can only
be used for constructor arguments, then cyclic \edges" de�ned with input attributes will
be harder to traverse.

In any case, cyclic structures require special analysis to achieve correct and e�cient
evaluation. Computing the dependencies and determining a correct evaluation order can
be di�cult. Farrow's \�bering" technique was speci�cally designed in order to provide
dependency analysis of cyclic structures [35].
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5.2.5 When Can Nodes be Created?

In ACGs and HOAGs, all node creation is done before any evaluation of the
attributes of the tree or subtree in which it resides. If it is legal to add nodes to a tree after
attribute evaluation has started, or more speci�cally, if it is possible to create new nodes
using values determined during attribution, it can be di�cult to determine a safe evaluation
order for attributes. A CAG is denoted non-separable, if attribute values of the tree being
created are used to direction further node creation in the same tree [36]. For example,
a node that was once a root may suddenly get a parent. If parent's existence depended
indirectly on an attribute that has a di�erent value for a node with a parent versus without
a parent, circularity is the result. Munson's Proteus system allows nodes in a tree to be
elaborated, that is, to be transformed into several new nodes, but this capability is strictly
limited so that elaboration can be performed before attribute evaluation [44].

5.3 Higher-Order Features in APS

In APS, nodes may be created in the manner of CAGs, and their input attributes
may be de�ned. APS also includes the novel ability to refer to nodes remotely by reference;
tree node references may be passed around in attributes. Higher-order features are used
extensively in the Oberon2 compiler and the APS compiler itself.

5.3.1 Node References

In APS, it is legal to refer to the nodes of the tree being attributed. This feature is
used heavily in the symbol table module. In order to distinguish node references from nodes
as syntactic entities grounded in the tree, APS requires that the type of a node reference
to be declared as remote. For example, after name resolution in the Oberon2 compiler is
done, every use of a named entity has a reference to the declaration to which it is bound:

attribute Use.use_decl : remote Declaration := nil;

This fragment declares an attribute use_decl that for every Use refers to a Declaration.
Use and Declaration are both phyla in the abstract Oberon2 tree language. The keyword
remote converts a phylum into a normal type. Any node may be implicitly coerced into
a remote node reference. The default value for this attribute is nil, a polymorphic node
reference that is di�erent from any constructed node reference.

Node references may participate in pattern matching. Figure 5.1 contains APS
code that checks whether local procedures (procedures declared local to another procedure)
are used properly. In Oberon2, references to local procedures cannot be stored in variables
or passed to other procedures; local procedures may only be called. The �rst two sections
de�ne boolean attributes: proc_is_local is true for procedures declared locally to another
procedure; proc_called is true for procedure expressions that participate in calls. The last
section is the one that uses the use_decl node reference.

For any identi�er expression, the clause �rst checks whether the use refers to
a procedure declaration. If so, and the procedure is local and the expression is not an
immediate call, an error message is generated. The nested pattern match is performed
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attribute Declaration.proc_is_local : Boolean := false;

match proc_decl(body:=block(decls:={...,?d=proc_decl(...),...})) begin

d.proc_is_local := true;

end;

attribute Expression.called : Boolean := false;

match funcall(?proc,?) begin

proc.called := true;

end;

match call_stmt(?call) begin

call.called := true;

end;

match ?e=named_expr(?using) begin

case using.use_decl begin

match ?proc=proc_decl(...) begin

if proc.proc_is_local and not e.called then

generate an error message

endif;

end;

end;

end;

Figure 5.1: Example of Using Node References from Appendix B.5
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using a node reference as a subject and the proc_is_local attribute is fetched from a node
reference.

Node references (including nil) may be compared using ==, the node identity
predicate. Node references (but not nil) in a completely built tree may be compared using
<<, a lexical ordering predicate. Chapter 4 illustrated a fragment of the Oberon2 compiler
that used these predicates:

private type SortedDecls := ORDERED_SET[remote Decl]((==),(<<));

var function find_local_decl(name : Symbol; scope : remote Contour)

: remote Decl

begin

case SortedDecls${decl if decl_name(decl) = name

for decl in scope.local_decls}

begin

match {?first,...} begin

result := first;

end;

else

result := Decl$nil;

end;

end;

In the declaration of SortedDecls, node identity (==) is used to distinguish elements in
the set and lexical ordering (<<) is used to order the set. In the body of find_local_decl
therefore, the lexically �rst declaration that matches the name is the one returned. A
function, such as this one, that fetches attributes from references to nodes must be declared
var. A var function can be used by a client of a module only after the tree is built and
attributed.

A node reference may refer to any other node in the tree. Therefore node references
are never controlling. In particular, it is illegal to assign attributes through node references.
Similarly no pattern variable bound in a pattern match on a subtree found through a remote
reference is controlling. Chapter 6 describes a type of attribute that allows non-controlling
assignments.

5.3.2 Creating Nodes

In APS, each call to a constructor creates a new node. In a module performing
a translation, nodes are created for an output tree designated by a type. For example, in
the Oberon2 compiler, a translation module converts between the Oberon2 abstract syntax
and an intermediate form used to communicate with the gcc back-end:

-- Convert abstract Oberon2 into the GCC tree language defined in

-- gcc-tree.aps in order to interface to rest of GCC compiler.

module OBERON2_TRANSLATE[T :: var OBERON2_TREE[],

var OBERON2_RESOLVE[T],
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var OBERON2_MACHINE_SIZES[],

var OBERON2_COMPILE_COMPUTE[T],

var OBERON2_LAYOUT[T]]

extends T

begin

type BareGccTree := GCC_TREE[](address_size);

type GccTree := OBERON2_GENERATE_RUNTIME[BareGccTree];

attribute Declaration.gcc_decl : GccTree$Declaration;

...

end;

This module uses many of the other modules that attribute abstract Oberon2 trees. It
de�nes a type GccTree that is a new instance of the GCC_TREE module. Inside this module
attributes are declared (for instance gcc_decl) that have syntactic type, that is, whose type
is a phylum of the tree being created. Such attributes are also known as syntactic attributes;
a value of syntactic type, such as a syntactic attribute of a node, or a local value of syntactic
type is known as a syntactic value.

The constructors must create tree nodes, not DAGs. This property is enforced
through two restrictions. First, syntactic attributes may be fetched only from controlling
bindings. More precisely, if a syntactic attribute is fetched from a remote or non-controlling
binding, the value is coerced into a node reference. This restriction avoids the problem of
using syntactic attributes of non-controlling bindings in more than one place. Without this
restriction, it would be possible to build DAGs.

The second restriction is that within any attribution clause, each syntactic value
may be used at most once. One use in each branch of a conditional counts as a single use.
The check is performed as follows. For every conditional or deterministic pattern match,
one branch is chosen. If the resulting clause has more than one lexical use of a syntactic
value, the attribution clause is illegal. If no such choice leads to more than one lexical use,
it is legal. We have termed this restriction SAMODUR (syntactic at most one dynamic
use requirement) [14] and it is a carefully designed weakening of Ganzinger and Giegerich's
SSUR (syntactic single use requirement) [39]. Actually SAMODUR applies to the whole set
of clauses in a normal attribute grammar and so is stricter that the clause-local restriction
spelled out here. Lexical ordering is used again to ensure that two syntactic uses in di�erent
clauses do not conict. The current APS compiler does not check these restrictions, but
the run-time system ensures that each node has at most one parent.

All the nodes of a phylum must be created before any attributes of the nodes
are needed. Since APS programs do not have an explicit evaluation order, this restriction
is expressed by an implicit dependency for every attribute on every node creation. As
elaborated further in Chapter 8, this restriction implies that an extending module may
either add new nodes to the tree or read attributes from the extended module, but not
both.
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5.3.3 Abstracting Node Creation

Since node creation is not a referentially transparent process and since all the
nodes of a phylum must be created before attribution begins, APS functions are not per-
mitted to create (attributable) nodes. However, APS provides procedures for abstracting
node creation. They may also be used to abstract the other non-referentially transparent
operations introduced in Chapter 6. Procedures may create nodes by calling constructors
or other procedures.

For example, in Appendix B.2, a procedure is declared that behaves like a con-
structor, providing a short-cut for creating Oberon2 type declaration nodes:

procedure make_global_type(name : String; base : Type) : Declaration

:= type_decl(identifier(make_symbol(name),exported()),base);

Procedures are thus important for factoring purposes.

5.3.4 Built-In Node References

The previous section listed restrictions to ensure that trees, not DAGs, were built.
Some data structures used by compilers, such as representations of basic blocks, are in the
form of DAGs. For this reason, APS supports DAGs through node reference parameters for
constructors. Node reference parameters are declared using a remote type. For example,
in the scope module that de�nes the Contour phylum, the following two constructors are
de�ned (see Appendix B.3.1):

constructor root_contour() : Contour;

constructor nested_contour(parent : remote Contour) : Contour;

The �rst constructor is used to create the root contour, the one that holds declarations of
global scope. The second constructor is used to create sub-scopes nested in another scope.
Since a scope may have many sub-scopes, the parent scope �eld of the constructor cannot
be a child, it must be a remote reference to the enclosing scope. Since constructors are
strict in APS (all the parameter values must be available before a node is returned), node
reference parameters can never introduce cycles. For example, it is not possible to create a
scope that is nested in itself.

5.3.5 Input Attributes

When cyclic structures are desired, they must be accomplished through input

attributes as in CAGs. Input attributes must be de�ned at the point in the rule which
creates the node. The interface to the GCC tree has many input attributes; the following
fragment from Appendix B.6.1 shows one:

-- Uses permit cyclic references within the tree:

constructor a_use() : Use;

input attribute Use.use_decl : remote Declaration := nil;
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Here every Use in the intermediate tree may refer to a Declaration somewhere else in the
tree, with no requirement of non-circularity.

The module also provides a procedure that does the assignment of the input at-
tribute at the same time:

procedure use_remote(d : remote Declaration) : Use begin

result := a_use();

result.use_decl := d;

end;

This procedure can be used to create a Use node that refers to a declaration that has
already been created. This example demonstrates that procedures in APS can be thought
of as abstractions over attribution clauses, whereas functions in APS are abstractions over
expressions.

5.3.6 Auxiliary Trees

Instead of using the nodes of the tree being attributed as values, it is always
possible to create an auxiliary node of a local phylum, assign some attributes and then pass
a reference to this node instead. This paradigm is used in CAGs. It may be useful as a way
to provide simpli�ed views of the nodes. For example, in the Oberon2 compiler, the symbol
table module passes around instances of auxiliary nodes representing contours rather than
passing around references to the nodes in the abstract parse tree that establish scopes.

The same dependency issues arise, however. It may be necessary to perform some
sort of \�bering" analysis to obtain a useful static approximation to the dynamic depen-
dency graph.

5.3.7 Referentially-Transparent Node Creation

Not all values need object identity and so APS provides a way to de�ne structured
terms without object identity. Constructors are used to declare the shape of the values, but
the result type of a pure constructor is a type, not a phylum.

Two isomorphic structured values are indistinguishable. Such objects may not
be attributed. The Oberon2 compiler uses such values to represent constant values. The
following declarations come from Appendix B.2.

constructor shortint_constant(value : Integer) : Constant;

constructor integer_constant(value : Integer) : Constant;

...

pattern some_integer_constant(x : Integer) : Constant

:= shortint_constant(?x),integer_constant(?x),longint_constant(?x);

zero : Constant := shortint_constant(0);

These constructors are used in the same way as constructors that create nodes with iden-
tity. However, pure constructors may also be called by functions, as seen in this example
presented in Chapter 2:
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function make_range(x,y : Constant) : Constants begin

case Constants${x,y} begin

match {some_integer_constant(?v1),

some_integer_constant(?v2)} begin

result := {shortint_constant(i) for i : Integer in v1..v2};

end;

else

result := {nil};

end;

end;

The pure constructor shortint_constant is called for every integer in the range.

5.4 Implementation of Higher-Order Features

Few of the features described here make any real change to the attribute grammar
paradigm and thus involve any particularly interesting implementation issues. The distinc-
tion between nodes with identity and those without is reected in the implementation in
that it is possible to enumerate the nodes of a phylum. Moreover for each phylum there is
a scheduled closing time, a point after which no more new nodes may be created for it. At
that point, the attributes for the nodes of the phylum are allocated.

Each node of a phylum must have a unique parent. Section 5.3.2 gave static
restrictions on the creation of nodes that ensure this property. The current APS compiler
does not check creation statically; instead the run-time system signals an error if a node is
given a second parent.

Lexical ordering between nodes (that is, the << operator) is handled by examining
the tree which contains the nodes. If the nodes are in disjoint trees, an arti�cial tree is
created containing both of the trees. These arti�cial trees are created only after the phyla
at the roots have been closed. Thus lexical ordering is always consistently (if arbitrarily)
de�ned.

As mentioned in Section 5.2.2, direct dependencies between non-neighboring nodes
make the dependency graph more complicated. Currently, the APS implementation uses dy-
namic attribute scheduling which makes remote dependencies trivial to handle. Eventually,
the APS compiler may perform static \�bering" analysis.

5.5 Summary

Higher-order features add much expressiveness to a compiler description language
as witnessed by the examples from the Oberon2 compiler. The use of higher-order features,
however, complicates static dependency analysis. APS provides a full set of higher-order
features, and is the �rst attribute-grammar based system to provide many of them.
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Chapter 6

Remote Attribution

Chapter 5 described features that permitted references to nodes in the attributed
tree to be transmitted through the attribute system. The attributes of such nodes could be
queried there, far from the point where the attributes were de�ned. The question then arises
whether it should be possible also to de�ne attributes of such nodes. This chapter discusses
this ability, remote attribution. The �rst section answers several questions: why remote
attribution is useful; how it helps in factoring a description, and what remote attribution
really means. The second section describes how remote attribution is supported in APS
through the device of collection attributes. The �nal section discusses implementation.

6.1 Motivation

The higher-order features described in Chapter 5 permit attributes to be queried
at remote locations, thus providing information ow from the location of the node in the
tree to the place where the reference to the node is used. But these features do not permit
attributes to ow in the reverse direction. Why might such reverse ow be useful? It is
useful in the case that information must ow not only from a declaration to a use, but also
from the use to the declaration. For example, determining whether a declaration has been
used at all requires such reverse ow. Similarly, a compiler for an imperative language can
perform certain operations if it knows a certain variable is never assigned a value. The
number of times a variable binding is used may also be useful; if a variable is used no more
than once, it may be possible to replace its sole use with its de�nition. Thus, the ability to
transmit information from where a node reference is used back to its location in the tree is
useful.

Of course, determining whether a declaration is used at least once does not require
the ability to write attributes remotely. Instead a description writer could write rules for
transmitting values back to the declaration node. These rules would parallel the rules that
transmitted the node, but information would ow in the reverse direction. If multiple pieces
of information were needed, either multiple parallel attribute de�nitions could be written
or the values could be packaged up and sent with one attribute de�nition. In either case,
one ends up with a dangerously redundant speci�cation|the same path is speci�ed more
than once and there is no formal mechanism for checking that the speci�cations are indeed
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identical. Moreover, choosing whether the values can be packaged together or not depends
on whether the two values have compatible dependencies. Determining dependencies and
legal packagings should be left to the compiler generator, rather than being hand-speci�ed
by the description writer.

There are problems with writing attributes remotely. As described in Section 5.2.3,
it can be impossible to determine statically whether an attribute is de�ned at all, or even
whether it is multiply de�ned. The same issues arise when using normal attribution to
avoid the need for remote attribution. For example, if each expression de�nes an attribute
that speci�es which declarations are used in the expression, then it would be necessary to
combine information for the subexpressions of an expression. If a declaration is used in any

of the subexpressions, then it is used in the full expression. If one wishes to keep track of
the number of uses, it is necessary to combine the counts from each subexpression for each
declaration separately.

Thus, in remote attribution there must be some way to specify the ways in which
disparate de�nitions are combined. The following section describes a class of attributes,
collection attributes, that may participate in remote attribution. Section 6.3 discusses the
implementation of these attributes.

6.2 Collection Attributes in APS

This section describes collection attributes in APS, as well as global and local
collections. It concludes with more discussion of procedures, which were introduced in the
previous chapter.

6.2.1 Collection Attributes

Collection attributes in APS are attributes that may be given multiple de�nitions.
These de�nitions are combined into a single value using a combining operator speci�ed in
the attribute declaration. For example, in the Oberon2 compiler (see Appendix B.5), there
is a collection attribute for each declaration that records whether that declaration is used
anywhere in the program:

collection attribute Declaration.decl_used : Boolean :> false, (or);

A collection attribute is distinguished by the keyword collection. The default value is
speci�ed using :> in place of := and has two parts, an initial value (used to prime the
collection process) and a combining function. If no default is given, the type must satisfy
the COMBINABLE signature (see Section 8.2.3), and the initial value and combining function
are inferred from the type. In this case, the default is false and the combining function is
or. (Since or is an in�x operator, it must be surrounded with parentheses to make a valid
APS expression.) The combining function should be both associative and commutative1,
because the collection attribute de�nitions are unordered.

All attribute de�nitions of a collection attribute are used; lexical ordering is irrel-
evant. In a de�nition of a collection attribute, any node value of the appropriate phylum

1The current APS compiler does not check these properties.
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may be used. It may be remote or from a non-controlling binding (see Chapter 3). For
example, the de�nitions for decl_is_used come from every use in the program:

match ?u:Use begin

if u.use_decl /= nil then

u.use_decl.decl_used :> true;

endif;

end;

The special de�nition syntax: lval :> rval is used for de�ning collection attributes. The :>
operator evokes the mathematical > operator. Rather than specifying the �nal value for
lval, it merely adds a constraint on the �nal value.

Any use of a collection attribute depends implicitly on every de�nition, and is
guaranteed to retrieve a complete de�nition. Such guarantees are di�cult in an imperative
framework, where the collection is updated as a side-e�ect. Since APS is declarative, each
attribute has a single �xed value; automatic dependency analysis ensures this property. For
example, the decl_used attribute can be used to generate warning messages for unused
unexported entities. (Exported entities may also get a use from outside the module.)

match ?d=declaration(identifier(?,not_exported())) begin

if not d.decl_used then

add_error(d,"Warning: declaration not used");

endif;

end;

Collection attributes are used like any other attribute. This fragment contains an example
of a procedure call (see Section 6.2.3).

The power of collection attributes (and thus remote attribution in general) is
demonstrated in that in a mere ten lines of code, the author was able to add detection
of unused variables. The resulting speci�cation is still declarative; execution order is not
speci�ed, only the necessary computations. It was unnecessary to de�ne and combine sets to
track used identi�ers and transport these sets through the whole tree. Collection attributes
are an important high-level abstraction.

6.2.2 Global and Local Collection Variables

Not only attributes of tree nodes, but both global and local variables may be
collections as well. For example, the clause for checking Oberon2 case statements has a
local collection variable:

type CaseSet := ORDERED_SET[remote CaseLabel]((==),(<<));

match case_stmt(?,?clauses,?) begin

collection labels : CaseSet;

-- first we flatten the case statement

-- and select only labels without errors

for clauses begin

match Cases${...,case_clause({...,?label,...},?),...} begin
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case label begin

match single_label(?) begin

labels :> {label};

end;

match range_label(?e1,?e2) begin

if e1.constant_value > e2.constant_value then

add_error(label,"Empty range");

else

labels :> {label};

endif;

end;

end; -- case label

end;

end; -- for clauses

...

end; -- match case_stmt

The local collection variable labels is an ordered set of the labels occurring in the case
statement. Since no default is given for labels, the initial value and combining function
are inferred from the type. All SET types are COMBINABLE; the inferred initial value is the
empty set, and the combining function is set union.

Despite the fact that this syntax looks imperative, it is not; the value of a collection
variable incorporates all its de�nitions, not just the ones lexically before the use.

6.2.3 Procedures

As mentioned in Chapter 5, whereas functions abstract expressions, procedures
abstract attribution clauses. One example used in the Oberon2 compiler is the add_error
procedure used in the preceding example. It is de�ned for a polymorphic type Node that
ranges over most of the phyla in the Oberon2 abstract tree language:

collection attribute Node.errors : Errors;

-- an internal way to report an error

private procedure add_error(node : remote Node; message : String) begin

node.errors :> {message};

end;

The message is put into a set and then added to the errors collection attribute for that
node. Another example of a procedure from the same �le is ensure_constant:

procedure ensure_constant(x : remote Expression)

begin

if not x.expr_constant then

add_error(x,"not constant");

endif;

end;
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This procedure includes a check on an attribute and otherwise calls the �rst procedure.
Procedures are an important factoring technique that avoid repetitive de�nitions. Without
procedures, there would be no way to factor out commonalities in attribute de�nitions.

Since procedures add constraints to an attribution system, they may only be called
from other procedures or in attribute clauses. In particular, they may not be called by
functions.

The procedures shown here have no return value. As the examples from Chapter 5
show, procedures may also return values.

6.3 Implementation of Collection Attributes

As with the ability to read remote attributes from a node, the most natural im-
plementation of remote attribution is to operate on the node reference. In Chapter 5, the
operation was to fetch the attribute from the node. In this case, the operation is to activate
a de�nition of the attribute of the node. The compiler ensures that all de�nitions of a collec-
tion attribute are activated before the value is used. More generally, the compiler ensures
that each collection variable instance (that is, an instance of a local or global collection
variable, or an instance of a collection attributes for a particular node) depends on all its
de�nitions.

As described in Chapter 2, the compiler for APS uses demand evaluation. This
section shows how collections are implemented in that context. Alternatively, earlier work
has shown that one can use �ber analysis to achieve a static schedule [11].

6.3.1 Locating De�nitions

In Chapter 5, remote dependency tracking was straightforward because of the
asymmetry: values might be demanded non-locally, but they were de�ned locally. In that
case demand evaluation works easily. Similarly, all the de�nitions of an instance of a global
or local collection variable can be easily determined. Local collection variables can only be
de�ned local to an attribution rule in any case and global collection variable de�nitions can
be found by traversing the tree. However, it is harder to determine all the de�nitions of the
instance of a collection attribute for a particular node.

This di�culty can be solved by noting that although one cannot tell which de�-
nitions of a collection attribute are relevant for a particular instance of that attribute, it is
possible to tell that some instance of the collection attribute is being de�ned. The compiler
adds arti�cial dependencies to ensure that no instance of a collection attribute is evaluated
before it is determined which node is being attributed at every de�nition of that attribute.

As mentioned in Section 2.3.2, an imprecise guard variable is introduced for every
attribute (and that includes collection attributes). Every instance of the collection attribute
is made to depend on the imprecise guard. In turn, the guard is made to depend on every
expression evaluating to a reference to a node for which that collection attribute is de�ned.
Once the imprecise guard has been evaluated, each de�nition of the collection attribute can
be assigned to the particular attribute instance.

It may seem that this solution will induce circularities whenever one collection
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attribute instance depends on another. It does not because the solution does not lead
to dependencies between collection attribute instances but between collection attribute
instances and expressions that compute the references to the nodes being attributed. Only
if one has a situation analogous to

node.some_collection.some_collection :> value

where the value of a collection attribute instance is a node being used for the de�nition of
another (or possibly the same) attribute instance will this solution detect a circularity.

If the most natural solution to some problem leads to collection attribute de�ni-
tions of this nature, it may be better to use a circular collection attribute, introduced in
Chapter 7.

6.3.2 Combining Values

Once all de�nitions are allocated to particular collection variable instances, de-
mand evaluation can continue as before. No priority ordering is used for collection variable
instances since all de�nitions contribute to the �nal value. Then, when the value of the
collection variable instance is demanded, all the values for the de�nitions are demanded.
The returning values are combined into a single value using the combining function.

6.4 Summary

This section introduced a novel feature in APS: collection attributes. Collection
attributes permit non-local de�nitions, since there is no need to ensure that a collection
attribute for a node has only one de�nition. Remote attribution is a powerful mechanism
for transmitting information in the reverse direction of higher-order attributes. Collection
attributes can be added to a demand-driven model by ensuring each instance of a collec-
tion attribute can only be evaluated after determining the nodes being attributed at every
de�nition site of the attribute.
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Chapter 7

Circular Attribution

Abstract interpretation and more speci�cally constraint systems over lattices (for
example Aiken's set constraints [2]) have been used to specify type-checking or to assist
optimization (see, for example Kennedy's methods for specifying data-ow [60]). Often
these speci�cations lead to circular systems of constraints.

Constraint systems where each constraint has the form v0 � f(v1; v2; : : : ; vn) for
variables vi can sometimes be solved. A function f is said to be monotonic if substituting
successively greater values for its parameters yields a greater value for the result:

(v01 � v1 ^ v02 � v2 ^ : : :^ v0n � vn) =) f(v01; v
0
2; : : : ; v

0
n) � f(v1; v2; : : : ; vn)

where � is the ordering relation of the lattice. More generally, a function may be monotonic
with respect to only some of its parameters. A constraint of the form v0 � f(v1; v2; : : : ; vn)
is likewise said to be monotonic (with respect to some subset V � fv1; v2; : : : ; vng) if f
is monotonic (with respect to the corresponding parameters). If all the constraints in the
system are monotonic and the lattice is �nite, a least �xpoint exists and is computable.
This chapter shows how such circular systems of constraints can be expressed in a natural
way in an attribute grammar formalism, and in particular in APS.

7.1 Circular Attribution in Attribute Grammars

In classical attribute grammar terminology, a well-formed attribute grammar is
precisely one that does not induce a circular dependency for any tree de�ned over its context-
free grammar. Even the most exible implementation methods for attribute grammars
fail in the presence of circular dependencies, as do any of the more e�cient techniques
that implement only a subset of the well-formed attribute grammars. Moreover, the kinds
of dependencies induced by a (monotonic) set-constraint system are awkward to express
without cyclic dependencies. At worst, all one can do is de�ne function-valued attributes
that are used by an out-of-line function to compute the �xpoint. Thus any extension of
attribute grammars to embrace circular dependencies is likely to require more than a simple
transformation to classical attribute grammars; new evaluations techniques must also be
de�ned.
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Before discussing the extensions that achieve the semantics needed to support set
constraints, two other extensions will be discussed. Augusteijn's Elegant system [7] permits
the description writer to mark certain uses of an attribute as lazy and thus explicitly break
circularity. This feature is used to build circular structures. However, the semantics of this
extension does not admit static dependency analysis if the circular structure is traversed
elsewhere in the attribute grammar. This restriction is lifted if one instead uses Farrow's
�bering analysis [35]. An alternative approach, one that permits attribute grammars to
describe dynamic semantics, is exempli�ed by Walz and Johnson's \gated attribute gram-
mars," [100] in which attributes may change values, in that special \gated" attributes have
two de�nitions, one of which breaks the cycle. The same e�ect can be achieved more ele-
gantly using Parigot el al.'s \scheme productions" [76] in which the computation is described
over a possible in�nite tree, rather than with circular dependencies among attributes.

This chapter, however, primarily concerns the expression of set-constraints and
similar recursive de�nitions in attribute grammars. Farrow has shown that attribute gram-
mars can be extended to handle circular attribution and gives two implementation methods,
one using a dynamic dependency graph, and one using static dependency analysis [33]. In
either case, the type of the attributes along a cycle must have a complete partial order with
an equality test, and the dependencies must be monotonic and satisfy the ascending chain
condition. For an attribute dependency expressed as a function f of one other attribute in
the cycle, the latter condition can be expressed mathematically:

8d1<d2 f(d1) � f(d2) (monotonicity)

8d1<d2<::: 9k>0f(dk) = f(dk+1) (ascending chain condition)

If these conditions are met, Farrow calls the attribute grammar a �nitely recursive attribute
grammar. Such an attribute grammar can be evaluated using successive approximations
starting from the least element in the complete partial order, and stopping when a �xpoint
is reached. The monotonicity condition ensures that a �xpoint exists and the ascending
chain condition ensures that successive approximation will reach it.

Farnum's DORA system (discussed in regard to pattern matching in Chapter 3)
also provides \recursive attributes" de�ned over lattices. These attributes can have circular
dependencies and they are implemented through the same technique of successive approxi-
mation. DORA does not use static analysis, but neither does it build a dynamic dependency
graph. Instead all instances of the attribute are evaluated together (possibly with all the
instances of other recursive attributes). As a result, it is an error if a non-recursive attribute
in the dependency graph lies between two instances of the same recursive attribute, even if
it is not involved in a circular dependency itself. However, recursive attributes in DORA
can have more complex dependencies than �nite recursive attribute grammars. A recursive
attribute may be assigned more than once, and an attribute instance being assigned can be
computed using other attributes. (In APS terminology, recursive attributes are \collection
attributes" as well as permitting circular dependencies.) Thus one can express dependencies
such as

8y2A(x) A(y) � A(x):

This expressive power is useful in forming transitive closures. Farnum's dissertation [29]
shows how Shiver's control-ow analysis [84] can be expressed in DORA. Recursive at-
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tributes must be de�ned over a lattice, a (complete) partial order with a least upper bound
operator (written _)1 that satis�es the following laws:

x _ y � x

x _ y � y

z � x; y () z � x _ y

The dependency functions along a cycle must be monotonic. The DORA system does not
check any of these properties.

In related work, A�mann's OPTIMIX optimizer generator [4] uses edge-addition
rewrite systems to specify circular program analyses. The restriction to edge addition
(as opposed to also permitting edge removal) corresponds to the monotonic dependency
condition for DORA.

7.2 Circular Attribution in APS

Circular dependencies are provided in APS through circular and circular collection

values. The �rst kind corresponds roughly to those supported by Farrow's system and the
second to Farnum's recursive attributes. This section describes each kind using examples.
Following this introduction is a discussion of various semantic issues.

7.2.1 Circular Attributes

The Oberon2 compiler does not use any circular attributes, but the APS compiler
does. Chapter 3 de�ned whether a pattern variable is \controlling" using set constraints.
These set constraints are implemented using circular attributes in Appendix C.5.1. Two
circular attributes are declared, one for the C(�) (called first_constructors2) and one
for P (�) (called positions):

type Positions := ORDERED_SET[Position]((=),position_less);

type PositionsLattice := UNION_LATTICE[Position,Positions];

...

circular attribute Pattern.positions : PositionsLattice;

...

circular attribute Pattern.first_constructors : ConstructorsLattice;

The type of a circular attribute must be a lattice or at least a complete partial order. Such
types have a bottom value and an order predicate. The lattices created by UNION_LATTICE

have the empty set for bottom, and use subset inclusion for ordering. The corresponding
INTERSECTION_LATTICEmodule requires a universal set as well as the element and set types;
it creates lattices with the reverse ordering relation, superset inclusion.

Circular attributes are assigned just as normal attributes:

1
t is also sometimes used.
2This set is later culled down by the pattern context to get the �nal set constructors. This optimization

(mentioned in Chapter 3) makes the transformation of pattern matching more e�cient.



109

match ?p=choice_pattern(?p1,?p2) begin

p.first_constructors :=

p1.first_constructors |\/| p2.first_constructors;

p1.positions := p.positions;

p2.positions := p.positions;

end;

Here the |\/| operator is the join operator for the lattice, in this case set union; the join
operation is guaranteed monotonic in its arguments. As with normal attributes, circular
attributes obey the lexical ordering rule for handling multiple applicable de�nitions: the
�rst such de�nition is the one used.

7.2.2 Circular Collection Attributes

Circular collection attributes combine the features of circular attributes (a �xpoint
is computed) with collection attributes (remote attribution and multiple de�nitions are pos-
sible). The type of a circular collection attribute must be a LATTICE type; a join operation
is required as well as the bottom value and ordering relation used by circular attributes.
A LATTICE type's join operation should satisfy the laws of a least upper bound operator,
whereas there is no such need for the combining operation of a COMBINABLE type. In par-
ticular, T$join(x,x) must be the same as x for a LATTICE type T, but T$combine(x,x)
need not be the same as x for a COMBINABLE type T. For example, addition is an acceptable
(and useful) combining operation, but could not serve as a join operation. The APS com-
piler does not currently check these laws, but all the standard type constructors that create
LATTICE types observe the laws.

The circular collection value in this example happens to be a local value:

-- we collect up all the positions for the body ...

circular collection body_positions : PositionsLattice;

-- ... and then assign them:

body.positions := body_positions;

body_positions :> p.positions;

for body begin

match pattern_scope(?holep=hole()) begin

holep.first_constructors := body.first_constructors;

body_positions :> holep.positions;

end;

end;

The join operation for a UNION_LATTICE such as PositionLattice is set union. The local
value body_positions collects together all the positions for recursive calls to the pattern
de�nition (the holes) into a single set. It must be declared circular, because it may depend
indirectly on the positions for the body of the de�nition. It must be declared a collection
because it is assigned multiple times; we wish to use the positions of every hole in the
pattern. As seen here, circular collection attributes are assigned as collection attributes,
using the :> syntax.
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In addition to LATTICE types created by UNION_LATTICE and INTERSECTION lat-
tice, several other lattices or lattice creating modules are standard in APS. There are two
prede�ned boolean lattices, OrLattice which orders false before true and its reverse
AndLattice. The boolean lattices are treated specially by the APS compiler (see Sec-
tions 7.2.4 and 7.2.5). The MAX_LATTICE and MIN_LATTICE modules create lattices over
COMPARABLE types, the �rst uses the comparison relation as the lattice ordering relation,
and the second uses its reverse.

All LATTICE types are created as extensions (see Chapter 8) over the base type of
the lattice. As a result, a value of the LATTICE type can be used wherever a value of the
base type is expected and vice versa. Were it not for this fact, one would need to convert
back and forth, and circular attributes would be much less convenient.

7.2.3 Successive Approximation and Normal Values

The most important aspect of circular attributes is that, despite the fact that
they are computed using successive approximation, only the �xpoints are used to compute
normal values (those not declared circular). Moreover, none of the intermediate values are
visible, that is, a�ect the construction of nodes, the assignment of normal attributes or
external procedure calls.

Values not declared circular must not take part in any cycles. Dependencies be-
tween value instances one of which is not circular are simple dependencies, as are non-
monotonic dependencies between circular attributes. Any chain of dependencies including
at least one simple dependency link is called a simple dependency chain. Simple depen-
dencies may separate strongly-connected subsets of circular instances, but any cycle of
dependencies involving a simple dependency is illegal.

7.2.4 Monotonicity

The distinction between simple and monotonic dependencies combined with the
ability to describe strongly-connected sets of circular instances separated by simple depen-
dencies gives us more expressiveness than DORA's recursive attributes, but also requires
more analysis. In particular, simple (that is non-monotonic) dependencies between two
circular instances are permitted. Unlike DORA, the APS compiler checks dependencies for
monotonicity.

Even an implicit conversion can be non-monotonic. For example:

type MaxIntegerLattice := MAX_LATTICE[Integer](0);

type MinIntegerLattice := MIN_LATTICE[Integer](1000);

circular a : MaxIntegerLattice;

circular b : MinIntegerLattice;

a := b; -- non-monotonic!

The last assignment is type correct because both variables store integers. However, the use
of b is this fragment is non-monotonic because it is not of the lattice of the left-hand side of
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the equation. This situation must be the case since successive approximations of a increase
from 0 and those of b decrease from 1000. If an approximation for b were used, rather than
its �nal value, a could end up with a value too large.

The use of a circular value in an expression is taken to be monotonic if the type
expected by its context is the lattice of the circular value. Thus if we declare a function as
taking a value of a lattice and returning one of another, the function is presumed monotonic;
it is an (unchecked) error if it is not. For example, if we de�ned a negation function that
took values of MinIntegerLattice and returned values of MaxIntegerLattice, we could
form a monotonic dependency between a and b:

function negate_min(x : MinIntegerLattice) : MaxIntegerLattice := -x;

a := negate_min(b); -- monotonic

Notice that an approximation to b is greater than what the �nal value will be, but an
approximation of -b is less than the �nal value of -b. That reasoning shows that the
declaration of negate_min is meaningful. The APS compiler does not attempt to perform
such a justi�cation; such declarations are simply trusted.

In addition, certain common situations involving the builtin keywords and, or,
not and in are known by the APS compiler to be monotonic. Both and and or can be
used monotonically in contexts expecting either an AndLattice or an OrLattice value.
The context is passed on to both parameters. In an OrLattice context, an AndLattice

argument of a not expression can be used monotonically, and the same is true with the two
lattices switched. In an OrLattice context, the set argument in an in expression can be
used monotonically if it is of some UNION_LATTICE type, and similarly for an AndLattice

context with a INTERSECTION_LATTICE set type.
A lattice comparison function is available using the |<=| syntax. It is declared

as returning merely a Boolean, but in an OrLattice context, the second argument can
be used monotonically, and for an AndLattice context, the �rst argument can be used
monotonically. The APS compiler also knows about |<|, |>| and |>=|. It may seem that
these rules are complicated, but they simply embody the common sense rule that a value can
be used monotonically, that is, an approximate value can be used, only if the approximate
value does not cause an e�ect not caused by the �nal value.

7.2.5 Wrappers

Dependencies can arise not only though assignments, but also through guards. For
example, in the fragment

if x then

y := 0;

endif;

the value y depends on x. When both are circular values, the issue arises as to whether
the dependency is monotonic or not. In this case, if x is of the OrLattice type, then the
dependency is monotonic: once the approximation of x becomes true, we know its �nal
value must be true as well.
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More generally, for the purposes of assignments in the `then' part of an `if' clause,
the guarding condition is evaluated as an OrLattice boolean, but for the purposes of
assignments in the the `else' part, the guarding condition is evaluated as an AndLattice

boolean. The common sense rule is that the guard is not used until it reaches its �nal
value; the guarded statements are not activated unless the system knows that the guard is
guaranteed to stay the same.

For example, suppose we have the following structure:

if c_opt and c_pess then

: : :

else

: : :

endif;

where c_opt (optimistic) is a circular value of type AndLattice (whose approximations
start true and become false if assigned), and c_pess (pessimistic) is a circular value of type
OrLattice (whose approximations start false and become true if assigned). Both and and
or are monotonic for both boolean lattices. For the purposes of the `then' part, c_pess
is used monotonically, but for c_opt, we require the �nal value. Thus any circular value
assigned in the `then' part depends non-monotonically upon c_opt. Similarly any circular
value assigned in the `else' part depends non-monotonically on c_pess.

In essence, the condition is implemented in two di�erent ways: once for each branch
of the `if.' The APS compiler ensures, however, than any procedure calls in the condition
are evaluated only once.

A similar, albeit simpler, situation applies to for-in structures:

for x in v begin

...

end;

The expression v for the set can be used monotonically if it is of a UNION_LATTICE type.
These lattices have the feature that once an approximation includes a certain element, we
know for certain that the �nal value will also include that element, and so it is safe to
evaluate the guarded equations with x bound to this element.

Figure 7.1 contains several examples of the cases discussed here. The fragment
comes from the APS type checker, which uses type variables for type inference. Each type
variable gets a set of types it is bound to (bindings) and a set of other type variables that
have been equated through the type inference process (chain). For each variable, we go
through the set of equated type variables (ignoring the variable itself) and then force each
type variable's bindings and chain attributes to include the the respective attributes of
the other type variable. Here ty1.chain depends directly on itself, but the dependency
is monotonic, since the use in the for-in wrapper is monotonic; the set of equated type
variables (ty1.chain) can never lose elements.

However, the rest of the fragment involves de�ning the normal (non-circular)
binding attribute and the type_errors attribute of \owner" whose declaration (not shown
here) states it to be a normal collection attribute. Since these attributes are not circular,
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attribute TypeVariable.binding : ContextualType := var_unbound;

var type TypeVariablesLattice :=

UNION_LATTICE[remote TypeVariable,TypeVariableSet];

type BindingsLattice := UNION_LATTICE[PartialType,BindingSet];

circular collection attribute TypeVariable.chain : TypeVariablesLattice;

circular collection attribute TypeVariable.bindings : BindingsLattice;

circular collection attribute TypeVariable.consistent : AndLattice;

...

match ?ty1=type_variable(?decl,?owner) begin --N.B. simpli�ed

ty1.chain :> {ty1};

-- force closure:

for ty2 in ty1.chain begin

if ty1 /= ty2 then

ty2.bindings :> ty1.bindings;

ty2.chain :> ty1.chain;

ty1.bindings :> ty2.bindings;

ty1.chain :> ty2.chain;

endif;

end;

...

-- set the binding or flag as inconsistent

if ty1.consistent then

case ty1.bindings begin

match {?ty,...} begin

ty1.binding := fix_partial_type(ty);

end;

else

owner.type_errors :> {"type variable unbound"};

end;

else

owner.type_errors :> {"type variable has inconsistent binding"};

endif;

Figure 7.1: Example of embedded attribute de�nitions from Appendix C.3
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the dependency between them and the circular values ty1.consistent and ty1.bindings

are simple. However, even if they were circular, the dependencies for the ones de�ned in
the `then' part guarded by the condition ty1.consistent would still be simple since the
guard is of the wrong lattice to be monotonic.

7.2.6 Procedures

The distinction between functions and procedures becomes more pronounced in
the presence of circular attributes. A function represents a pure value abstraction, but an
internal procedure, a procedure declared local to the module being implemented, represents
an abstraction over the attribution clauses of that module. The formal parameters of the
procedure represent by name the actuals and so may represent circular values. Uses of
formal parameters may be monotonic. If the result of a procedure may be used in a legal
cyclical dependency, it should be declared circular and typed with a LATTICE type.

External procedures including constructors for a phylum are di�erent since they
are assumed to have an unanalyzable e�ect. Thus an external procedure is only called after
its parameters have their �nal values.

7.3 Implementation

As mentioned earlier, the current APS implementation does not perform static
scheduling; instead it uses demand evaluation. But demand evaluation works correctly only
for (simple) dependencies between normal instances. When a circular instance is demanded
simply (that is, in a non-monotonic context), it cannot return an approximate value; it
may only return the �nal (�xpoint) value. For this reason, if a circular instance is not
yet fully evaluated, a simple demand dependency is handled as an exception that unrolls
all the currently demanded instances. Later, in a separate phase, each circular instance is
demanded monotonically. When a circular instance is demanded monotonically, the next
approximate value is computed, but each circular instance is recomputed only once per
sweep through the instances. There are a number of complications to this basic model; this
section describes the implementation method more fully.

7.3.1 Simple versus Monotonic Demand Evaluation

The runtime system goes through two phases when evaluating instances; these
phases are repeated as necessary until all instances are evaluated.

The �rst phase involves monotonically demanding every circular instance until all
have reached �xpoints. During this phase, the runtime system repeatedly brings a subset of
the still un�nished instances to a �xpoint. Eventually, all circular instances are computed.
The set of instances currently being brought to a �xpoint is called the active set. Each
repetition starts with all remaining un�nished circular instances in the active set. If it turns
out that one circular instance has a (possibly indirect) simple dependency on another, the
�rst is removed from the active set.

During the second phase, instances are demanded simply. If any new circular
instance (for example, a circular local variable) is created during this phase, it must wait
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until the next repetition of the �rst phase before it can return a value. Demanding the value
of such a circular instance or any other un�nished circular instance terminates all pending
evaluation attempts. These normal instances will not be evaluated until the next repetition
of the second phase.

7.3.2 Guards

As mentioned in Section 6.3, a collection attribute instance depends on the im-
precise guard for the attribute. The guard ensures that the node for each de�nition is
known. As a result, all the nodes whose collection attribute is being de�ned must be known
before any of the collection attribute's instances may be evaluated. If this feature were
carried over to circular collection attributes, then if the node being de�ned a collection
attribute instance depended (indirectly) on an instance of the same collection attribute,
then all instances would depend indirectly on each other. As long as the dependencies were
monotonic, the instances could still be evaluated, but a single simple dependency between
two instances would result is an illegal cycle. In Farnum's DORA system, the equivalent to
circular collection attributes has this property; all instances must be evaluated together.

However, simple dependencies are necessary in certain situations, such as in type-
inference. For example, one usually wishes to infer the type of a function by itself before
using the inferred type for the uses of the function. Such a situation is present in the type
checker for APS given in Appendix C.3. Proper implementation of such systems requires
some analysis of the possibly a�ected attribute instances so that the dependencies can
be properly limited. Further research is needed on such analysis; in the meantime, the
current APS compiler can implement a module under the assumption that all dependency
paths through imprecise guards are monotonic. In this case, the guards are always kept
on the active set, but are not brought to a �xpoint until every instance they depend on is
completely evaluated. The programmer may have to add additional dependencies to ensure
a safe evaluation order. The runtime system detects when such an unsafe evaluation order
leads to erroneous execution, and terminates the evaluation with a diagnostic.

7.3.3 Simple Dependencies

During monotonic demand evaluation, a monotonic dependency chain of circular
instances is maintained (the pending set). Then whenever a normal (non-circular) instance
is demanded, monotonic evaluation is turned o� while it is being computed. If during
such an evaluation, an unevaluated circular instance is demanded, all the pending circular
instances are marked as having a simple dependency on this latest circular instance and
are removed from the active set. Then evaluation of all these instances is terminated
and monotonic evaluation continues with the next instance on the active set. Similarly, if a
circular instance already marked as having a simple dependency is demanded (either simply
or monotonically), all pending instances are marked as before and removed from the active
set. In this way the active set is reduced to those circular instances that do not have simple
dependencies on unready circular instances.
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7.3.4 Finding a Fixpoint

The runtime system repeatedly monotonically demands every instance on the ac-
tive set. At each iteration, it resets a changed ag. Whenever a circular instance gets a
new successive approximation, the changed ag is set. If the ag is still clear when the
iteration is over, all instances in the active set have reached a �xpoint. At this time, any
imprecise guards in the active set are removed, and the rest are marked as �nished. Then
each instance marked as having a simple dependency is checked to see if the instance on
which it depends is �nished, and if so the simple dependency marking is removed. Any
remaining un�nished circular instances without (known) simple dependencies are placed on
the active set and evaluation continues until either all circular instances are �nished, or else
a cycle is found. In the latter case, an error is reported and evaluation is aborted.

7.4 Summary

Circular attribution is needed in a declarative compiler formalism for expressing
many analyses necessary for optimization. Circular collection attributes allow new de-
pendencies to be added monotonically during evaluation. Moreover, they can be used to
implement uni�cation without side-e�ects. APS supports these sophisticated attribution
ows.
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Chapter 8

Modularity

This chapter describe previous proposals for integrating modules into attribute
grammars. Then it describes the module system of APS, and how modules are used to split
a language description into smaller coherent parts.

8.1 Other Treatments of Modules in Attribute Grammars

Traditionally attribute grammars are monolithic. One early example is the 24,000
line Ada front end written in GAG/ALADIN [95]. Apart from the factoring provided by
the context-free grammar, that description was written as a single entity. At least in this
case, the entire attribute grammar was occupied with the closely linked tasks of name
resolution and type-checking. However in other cases, such as the complete compiler for
Pascal developed by Farrow [32], attribute de�nitions concerned with code generation are
intermingled with ones performing name-resolution.

A number of methods for adding modularity to attribute grammars have been pro-
posed; Watt gives a summary [101]. Some of the proposals for so-called module attribute
grammars however, are really more appropriate for smaller levels of granularity than that of
program modules. For example Baum's modular attribute grammars [8] allow an attribute
grammar to be factored into pieces, each piece of which includes one or more productions
from the grammar and all the associated de�nitions for it. This method provides no sup-
port for factoring beyond that in a classical attribute grammar, neither does it provide
for separate compilation of modules. Similarly, Dueck and Cormack's modular attribute
grammars [26] provide a limited form of untyped pattern matching suitable for specifying
attributes over concrete parse grammars, but each module de�nes a single attribute and
cannot be separately implemented. Moreover, their paper suggests that their concept of
modularity had been tested only for systems requiring at most a hundred or so attribute
de�nitions.

Larger-scale reuse and conceptual factoring can be accomplished by producing ab-
stractions of the program being analyzed. For example, one can accomplish the task of
name resolution over an abstract grammar that consists merely of scope boundaries, vari-
able de�nitions and uses, and then map the solution to the actual structure used in the
program. Kasten's and Waite's modularity mechanism [59] used in the LIGA system [57]
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supports this idea by allowing a production to inherit clauses from another production.
With Farrow, Marlowe and Yellin's composable attribute grammars [36], one creates the
abstract structure directly using normal attribute de�nitions. Composable attribute gram-
mars allow more exibility in the application abstraction than in LIGA, but the constraint
of \separability" (needed for implementation) means that the evaluation of attributes in
di�erent modules cannot be intermingled. This restriction limits the kinds of dependencies
that can be expressed.

The module system of Olga in Jourdan et al's FNC2 [52] is most like that of a
general-purpose programming language's module system (it also resembles that provided in
APS). In Olga, attribute grammar modules may import an attributed tree and then either
de�ne more attributes for the tree or else produce a new tree to be attributed elsewhere.
Olga modules can be separately compiled.

8.2 Modules in APS

Modules provide medium-scale structuring in APS. The appendices give a num-
ber of module de�nitions. Modules export services and may be instantiated, extended or
inherited. This section describes modules and how they are used.

8.2.1 Module Declarations

Modules are de�ned using the keyword module. Modules may be parameterized by
types or values: type parameters are given in brackets [...]; value parameters in parenthe-
ses (...). For example the ALGOL_SCOPEmodule in Appendix B.3.1 takes a type parameter
named Decl and a value parameter named decl_name. When a module is instantiated, the
result is either a type (by default), or a phylum (indicated, as in this example, by the
keyword phylum). Section 8.2.2 describes instantiation in greater detail.

Entities in a module may be declared public or private. By default, an entity
is public, but the declaration \private;" changes the default to private for the following
declarations. For example, in the module for checking Oberon2 programs, only a few entities
are public (the full text is given in Appendix B.5):

module OBERON2_CHECK[: : :] : : :

begin

signature ERROR_NODES :=

{Declaration,Header,Receiver,Type,Statement,Case,

CaseLabel,Expression,Element,Use}, var PHYLUM[];

type Errors := BAG[String];

[phylum Node::ERROR_NODES] begin

collection attribute Node.errors : Errors;

-- an internal way to report an error

private procedure add_error(node : remote Node; message : String) begin

node.errors :> {message};

end;
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end;

private;

...

collection attribute Declaration.decl_used : Boolean :> false, (or);

...

attribute Use.use_variable : Boolean := false;

...

end;

The module contains many entities including several attribute declarations (just three are
shown here), but only one attribute, errors, is public. This attribute is de�ned over phyla
satisfying the signature ERROR_NODES and has type Errors. All the other named entities are
relevant only to the implementation of the module; they neither conict with other entities
of the same name in other modules, nor are directly accessible outside the module.

In order to permit separate compilation, services|that is, public entities of a
module|are declared var , or (by default) constant . The services declared as var and all
attributes are permitted to depend on attribution clauses in the module. They may also
depend upon the results of the uses of input services: procedures, constructors for phyla,
and attributes or variables declared assignable by the client using the keyword input.
For example, the ALGOL_SCOPE module has an input attribute named local_decls, a var
function named find_local_decl, and a constant type named Decls.

Since a client of a module cannot and should not know which var services depend
on which input services, any use of an input service must be scheduled prior to any use of
a var service. Constant services may be used at any time. At runtime, each instance of
a module undergoes a transition called �nalization. Before this point, input services may
be used; after this point, var services may be used. During �nalization, the clauses in the
module are activated and all variables have their �nal value computed. The APS compiler
must schedule module instance �nalizations.

8.2.2 Instantiation

Modules must be instantiated with type and value parameters (if any) to be used.
The result of such instantiation is either a type or a phylum. Chapter 4 discussed the
SEQUENCE module that constructs sequence phyla as well as the modules BAG, LIST, SET,
and ORDERED_SET. Previous examples have show many instantiations such as

type Decls := BAG[remote Decl];

Module instantiations must be named, as seen here.
User-de�ned modules are instantiated in the same way. For example, the module

ALGOL_SCOPE is instantiated twice (as it happens) in the Oberon2 symbol table module in
Appendix B.3.2. The �rst instantiation creates the Contour phylum:

phylum Contour := ALGOL_SCOPE[Declaration](decl_name);
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A service provided by the module may be accessed through the type using the no-
tation type$service. This notation is borrowed from Russell [9] and CLU [68]. For example,
the root_contour constructor from ALGOL_SCOPE is fetched from Contour:

root_contour = Contour$root_contour;

pattern root_contour = Contour$root_contour;

...

Here, root_contour is de�ned as a local alias or renaming of the one available from Contour.
A renaming is distinguished from a declaration by the use of =. Since constructors live in
both value and pattern name spaces, two renamings are used. A renaming gives the name
space; by default the value name space, other name spaces are given by one of the keywords
signature, type, or pattern.

Every instantiation of a module yields a di�erent type. This rule known as the
\generative type constructor" rule, similar to the better known \name equivalence" rule,
means that values of structurally identical types are not type compatible. For example,
later in APS_SYMTAB, we have another instantiation of the ALGOL_SCOPE module:

phylum RecordContour := ALGOL_SCOPE[Declaration](decl_name);

A value of type RecordContour may not be used where a value of type Contour

is expected and vice versa. Similarly, the two phyla Formals and Fields are incomparable
despite both being declared as SEQUENCE[Declaration] (see Appendix B.1). Bounded
polymorphism makes the generative type constructor rule less onerous than it would be
otherwise.

8.2.3 Extension

One module may extend another module's services. More precisely, a module may
extend the services provided by an already constructed type (such as that passed as a type
parameter). The resulting type is the same as the original type for the purpose of type-
equivalence, but has additional services. Inside the scope of the extending module, the
original services of the type may be used without $ quali�cation. The extension may only
use the public entities of the extended type. (This idea of extension was developed from
Maddox's work [69].)

Extension is very convenient and is used throughout the Oberon2 compiler. Most
modules are parameterized by a type parameter representing the tree and subject to various
\signatures". Each then extends the type received in the parameter. For example, the
module for checking Oberon2 (from Appendix B.5) has the following header:

-- Compile-time checks for Oberon2:

-- we use the information provided by the resolution phase

-- and by compile-time computations and check that there are no errors

module OBERON2_CHECK[T :: var OBERON2_TREE[],

var OBERON2_RESOLVE[T],

var OBERON2_COMPILE_COMPUTE[T]] extends T
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The type parameter must have the services provided by OBERON2_TREE, OBERON2_RESOLVE,
and OBERON2_COMPILE_COMPUTE. The keyword var here means that services marked var

must be available, and in particular attributes have their �nal values. Each of the restric-
tions, and the concatenation of the restrictions is a type signature (as used by Donahue and
Demers for Russell [25]) known simply in APS as a signature.

The result of this module invocation is the same as the type parameter, but has
the additional services provided by OBERON2_CHECK (basically just the attribute errors).

8.2.4 Inheritance

An extending module cannot modify the implementation of the services already
provided by a type. Inheritance, on the other hand, does allow such modi�cations. It
also allows the implementation of systems of non-separable (mutually dependent) modules,
because the clauses of the inherited module are scheduled with the clauses of the inheriting
module.

When a module is inherited, the e�ect is that its entire body is copied into the body
of the inheriting module. This model of inheritance (pure implementation inheritance) is
derived from that of Sather [93]. All entities, public or private, are available to the renamings
and \replacements" (see below) in the body of the inherit clause; any renamed entities are
treated as entities of the inheriting module.

In the Oberon2 compiler, the tasks of name resolution and computing the types
of expressions must be performed together because in order to resolve a �eld identi�er in a
record selection, it is necessary to know the type of the record expression, but in order to
know the type of a variable use, it is necessary to �rst resolve its name. However, for modu-
larity, name resolution and expression type computation are described in separate modules.
In order to implement the tasks, they are inherited together into a single module. In partic-
ular, this combined module OBERON2_RESOLVE module inherits from the OBERON2_SYMTAB

module:

inherit OBERON2_EXPR_TYPE[T](use_decl) begin

var base_type = base_type;

var expr_type = expr_type;

var expr_header = expr_header;

var implicitly_guarded = implicitly_guarded;

end;

This example has four value renamings, each marked var because they are public var services
of the OBERON2_RESOLVE module.

Outside the body of the inherit clause, the inherited entities are only known if they
were renamed in the body of the inherit clause. The renaming requirement is intentional
in the design of APS. It ensures that inheriting a module can never result in name clashes.
It also allows a person reading the description to know what a name refers to.

The inheritance clause may include replacements as well as renamings. Replace-
ments act to consistently modify the contents of the inherited module. Each replacement
gives the name of a service used in the inherited module and a name of a service accessi-
ble in the inheriting module with which to replace the uses. By simultaneously renaming
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an inherited service and replacing its uses, one can use the old de�nition of a function to
assist in writing the new de�nition. The following fragment comes from a module in the
APS compiler, that describes a null transformation of an abstract APS tree annotated with
binding information. (see Appendix C.4.1). This module uses inheritance and is likewise
inherited by other modules performing transformations.

inherit COPY_ABSTRACT_APS[Input,CopyRecords] begin

...

copy_Use -> copy_Use;

var inherited_copy_Use = copy_Use;

end;

The COPY_ABSTRACT_APSmodule is an automatically generated module which simply copies
an APS program in its abstract tree form. The inheriting module does a copy with an
additional change: name resolution information is copied to the new tree. In order to
avoid duplication of e�ort, the COPY_ABSTRACT_APSmodule is inherited. However, in order
to add the name resolution information to the new tree, this module needs to access Use
nodes are they are created. Thus it replaces the inherited copy_Use procedure with its own
version (declared earlier in the �le). However, most of the work is identical, and so it also
inherits the original version under a di�erent name so it can be used in the new de�nition
of copy_Use.

8.3 Implementation

Modules are conceptually functors that accept types and/or values and compute
types. In the implementation, they are functions. The services provided by a type are
stored in a dictionary, indexed by name space and by name.

When a module is executed, it evaluates constant variables and types. Then it
arranges for the constant and input services to be available: constructors, procedures, and
input attributes. At this point the resulting type is said to be initialized. At some point, the
module will be requested to �nalize its instance. First all attribution clauses are activated
and the demand evaluation worklists are initialized. Then demand evaluation is used to
bring all variables to their �nal values. Finally, the input services are removed from the
dictionary and the var services are added.

Demand evaluation is used in the calling module to ensure that a module instance
is not �nalized until after all uses of input services are accomplished, and that no var
service is used until after �nalization. This situation is accomplished by noting not only
which variables are potentially a�ected by an attribution clause or procedure, but also which
types are modi�ed : that is, for which types input services are used. When it is necessary to
postpone the evaluation of an attribution clause or procedure due to demand evaluation,
it is placed on the guard thunk list of a guard variable for a type. The type itself is made
to depend only on types and values needed to initialize the type, leaving �nalization to its
guard variable.
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8.4 Summary

Modularity is an important property of a compiler description, in keeping with its
importance for all other programs. The description language may either encourage or hinder
modular design. APS provides modules which have public and private services. These
modules may use other modules, extend types or inherit other modules. These methods are
used extensively in the Oberon2 and APS compilers described in the appendices to create
modular descriptions.
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Chapter 9

Descriptional Composition

Descriptional composition combines two stages of a compiler description, the �rst
of which produces a tree attributed by the second, and produces a new stage (called the com-

posed stage) that does the work of both. The term descriptional composition contrasts with
functional composition. In functional composition, the two stages are compiled (possibly
separately) and then run successively.

Descriptional composition is similar to performing inline substitution of proce-
dures. The di�erence stems from the fact that the �rst stage does not directly invoke the
the second stage. Instead it merely produces an intermediate structure to be attributed by
the second stage. The equivalent advantages and disadvantages of inline substitution apply
to descriptional composition. With inline substitution, one avoids the procedure call over-
head; with descriptional composition, the intermediate tree need no longer be produced. An
inline substitution may allow optimizations such as constant folding; descriptional compo-
sition allows similar optimizations to be performed. A disadvantage of inline substitution is
that the program will usually grow in size; similarly, a composed stage is likely to be more
complicated than either of its parts. As with inline substitution, descriptional composition
is most useful when at least one of the stages involved involves work comparable with the
work of creating the intermediate form.

Section 9.1 describes previous work in descriptional composition. Then Section 9.2
describes the process as implemented in the current APS compiler. Section 9.3 describes
the results of descriptionally composing two stages of the Oberon2 compiler.

9.1 Previous Work

The term descriptional composition was introduced by Ganzinger and Giegerich,
who give an algorithm for composing attribute-coupled grammars (ACGs) [39]. Giegerich
has described several closure properties of the composition operation [41]. Descriptional
composition of two translations is possible when the �rst translation obeys a certain stat-
ically veri�able property. Boyland and Graham show how this restriction can be relaxed
in certain cases [14]. In essence, both the original restriction and the later one require
that the �rst translation build a tree; each node must have a unique parent in the tree.
Every syntactic attribute must be used exactly once in an attribution rule (Ganzinger and
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Giegerich) or at most once for each instance of the rule in which values are chosen for all
of its conditionals (Boyland and Graham). Without this restriction, inherited attributes in
the descriptionally composed module are multiply de�ned. Farrow, Marlowe and Yellin [36]
remarked that descriptional composition was performed by hand in order to implement
some \non-separable" (that is, mutually dependent) modules. This process could have
been automated assuming the modules in question satis�ed the equivalent restriction for
CAGs.

Interestingly, all previous instances of automatic descriptional composition have
concerned \toy" examples. In fact, the MARVIN project [40], which set out to imple-
ment large-scale attribute-coupled grammars, was apparently abandoned before descrip-
tional composition could be implemented. This lack of realistic examples raises the question
of whether the method scales well to larger and more complex cases. This chapter answers
this question by showing that descriptional composition can indeed scale well.

9.2 Descriptional Composition in APS

Since the APS compiler cannot predict whether descriptional composition will
yield a bene�t or not, its use is controlled by the description writer with the pragma
compose applied to intermediate structure types. Moreover, all the relevant modules must
be expanded into a single module that must not export any phyla to be composed, nor any
operations on instances of the phyla. In this manner, the compiler has access to the entire
body of code that creates and traverses instances of the phyla.

For example, as seen in Appendix B, the Oberon2 compiler has two translations:
from Oberon2 abstract syntax to the GCC tree representation and from the tree repre-
sentation to C (represented as text). The two translations are composed in the module
OBERON2_COMPOSE given in Appendix B.8. This short module simply hooks together the
modules taking part in descriptional composition and provides pragma's for each interme-
diate phylum to be removed. All the phyla of GCC_TREE are marked for removal except
TypePhylum, as its instances are traversed recursively in a way that inhibits composition.
(The reasons are given in Section 9.2.2.)

Descriptional composition removes phyla. For that purpose, it is necessary to
regularize and simplify the creating and reading of instances of these phyla. Several canon-
icalizations are applied to uses of the phyla. Next, analysis of the result is performed to
determine what attributes are read or written for which variables carrying instances of the
phyla being removed. Finally, descriptional composition per se can be carried out. Since
descriptional composition enables a number of simpli�cations (such as using known condi-
tional values), these simpli�cations are then performed. The rest of this section describes
the process in detail.

9.2.1 Canonicalizations

Constructor Calls The logically �rst step is to isolate all calls to constructors of the
phyla to be removed. Each such constructor call in an expression is converted into the form

v0 : type := constructor(v1,: : :,vn);
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where each vi is a (new) local variable. Procedure calls that return instances of the phyla to
be removed are treated similarly. For example, the translation for set elements in Oberon2
consists of generating a logical shift:

match ?e=single_element(?v) begin

e.gcc_element :=

GccTree$lshift(GccTree$make_integer_cst(1,gcc_set_type),

v.gcc_expr);

end;

This call is rewritten as

match ?e=single_element(?v) begin

arg1 : GccTree$Expression := GccTree$make_integer_cst(1,gcc_set_type);

arg2 : GccTree$Expression := v.gcc_expr;

call : GccTree$Expression := GccTree$lshift(arg1,arg2);

e.gcc_element := call;

end;

Pattern Matching Next, pattern matching on instances of the phyla to be removed is
converted to attribution. This transformation is described in detail in Section 3.4.4.

Lexical Ordering Expressions of the form e1 << e2 are converted into comparisons of
a new attribute e1.pos < e2.pos together with equations for the new attribute.1 These
equations are tedious to write, but easy to generate automatically. That is the purpose,
indeed, for having lexical position comparison as a built-in operator. This transformation
can be avoided altogether if a source-level optimization can remove the relation. The only
use of the << relation in the module to convert GCC trees to C text can be removed in this
way.

9.2.2 Analysis

Named values (including formal parameters, local and global variables, and at-
tributes of nodes) that may carry references to nodes of the phyla to be removed are marked
as carrying values. Carrying may be direct (the value is a node reference) or indirect (the
value is a collection of node references). For each such value, the analysis stage determines
which attributes are read or written for the node references carried. For example, in the
following fragment, the text attribute is fetched from e.expr_type:

match ?e=integer_cst(?v) begin

e.text := "(" || e.expr_type.text || ")" || v;

e.no_effect := true;

end;

1The new attribute would not incrementalize well, and so if the composed module is to be implemented

as an incremental compiler, it is desirable to convert the comparisons of the attribute into << expressions of
the input to the �rst stage or more locally de�ned attributes.
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Moreover, for each type constructed using the phyla being removed, analysis is
used to determine which attributes are fetched for values of these types. For example, a list
of dimension expressions is collected for each array expression:

-- array expressions carry along their dimensions separately:

type GccRemoteExpressionList := LIST[remote GccTree$Expression];

As it happens, the attribute text is read from instances passed in such lists.
The analysis currently works using a simple ow-analysis of the carrying values.

The attribute reads and writes are propagated back to the place where the node is created.
This method can break down in the presence of fetched attributes that themselves carry
node references. Descriptional composition gets rid of carrying values by composing them
with the attributes fetched from references to nodes carried. If a carrying value is composed
with such an attribute, the result is another carrying value that must itself be composed.
Thus if an attribute carries a node that indirectly carries another node with the original
attribute, the process of descriptional composition may never terminate. In the case of
the Oberon2 compiler, TypePhylum of the GCC tree module is used in such a way that
it possesses many such attributes (if pattern matching were to be removed), because, for
example, for every pointer type, there must be an attribute of its base type. As a result,
this phylum is excluded from descriptional composition.

9.2.3 Composition

At this point, the process of descriptional composition per se can start. First the
top-level match rules for the phyla are substituted where the appropriate nodes are created.
Next, new attributes and constructed types are generated. Attribute reads and writes of the
node to be removed are converted to reads and writes of the new attributes. At the same
time, new copy rules are introduced. Finally, all rules creating and passing node references
are removed. Descriptional composition is complete.

Substitution At every point an instance of a phylum to remove is created, all the ap-
propriate top-level clauses that apply to the constructor being called are substituted. For
example, an Oberon2 call statement is translated to a GCC do statement:

match ?s=call_stmt(?call) begin

s.gcc_stmt := GccTree$do(call.gcc_expr);

end;

This fragment is �rst canonicalized as

match ?s=call_stmt(?call) begin

arg1 : GccTree$Expression := call.gcc_expr;

Xdo : GccTree$Statement := GccTree$do(arg1);

s.gcc_stmt := Xdo;

end;

The translation to C text contains the following top-level match for do:
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match ?s=do(?expr) begin

s.text := block_saved(s.indent,expr.saved_decl_texts,

expr.text || ";\n");

end;

Moreover, the indent attribute for statements has a default that uses the node for which
it is de�ned:

[T :: INDENTING] attribute (node:T).indent : String :=

make_indent(node.depth);

Thus substitution yields

match ?s=call_stmt(?call) begin

arg1 : GccTree$Expression := call.gcc_expr;

Xdo : GccTree$Statement := GccTree$do(arg1);

Xdo.text := block_saved(Xdo.indent,arg1.saved_decl_texts,

arg1.text || ";\n");

Xdo.indent := make_indent(Xdo.depth);

s.gcc_stmt := Xdo;

end;

Generation For every variable carrying instances of the phyla being removed, new vari-
ables are generated, one for each attribute read or written as determined by the analysis.
The types of these new variables may be newly created. Then, attribute reads and writes
are redirected to use these new variables. Copy rules are introduced in parallel with copy
rules that carry variables; synthesized attributes in the direction of the copy and inherited
attributes in the reverse direction. For example, the preceding expanded example is further
elaborated

match ?s=call_stmt(?call) begin

arg1 : GccTree$Expression := call.gcc_expr;

arg1@saved_decl_texts : SavedDeclTexts :=

call.gcc_expr@saved_decl_texts;

arg1@text : String := call.gcc_expr@text;

Xdo : GccTree$Statement := GccTree$do(arg1);

Xdo@text : String :=

block_saved(Xdo@indent,arg1@saved_decl_texts,

arg1@text || ";\n");

Xdo@indent : String := make_indent(Xdo@depth);

s.gcc_stmt := Xdo;

Xdo@depth : Integer := s.gcc_stmt@depth;

s.gcc_stmt@text := Xdo@text;

end;

Here @ is used as an alphabetic character; the variable arg1@text replaces the attribute
fetch arg1.text.
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Removal of Phyla Now that instances of the phyla to be removed are used neither in
pattern matching nor in attribution, the phyla can �nally be removed, together with any
variable carrying instances of the phyla and all their attribution rules. In the running
example, this transformation produces

match ?s=call_stmt(?call) begin

arg1@saved_decl_texts : SavedDeclTexts :=

call.gcc_expr@saved_decl_texts;

arg1@text : String := call.gcc_expr@text;

Xdo@text : String :=

block_saved(Xdo@indent,arg1@saved_decl_texts,

arg1@text || ";\n");

Xdo@indent : String := make_indent(Xdo@depth);

Xdo@depth : Integer := s.gcc_stmt@depth;

s.gcc_stmt@text := Xdo@text;

end;

9.2.4 Simpli�cation

After descriptional composition has been applied, the description has a great many
local variables that have their default values. If the variable is used at most once, or if its
default value is trivial to recompute, its uses may be replaced by its default value with some
gain in performance. For example in the previous fragment, all of the local variables can
be substituted and then removed:

match ?s=call_stmt(?call) begin

s.gcc_stmt@text :=

block_saved(make_indent(s.gcc_stmt@depth),

call.gcc_expr@saved_decl_texts,

call.gcc_expr@text || ";\n");

end;

We now have a component of a compiler that goes directly from an Oberon2 abstract syntax
tree to C text without using an intermediate form. This compiler is generated automatically;
only the original compiler modules must be maintained by hand.

9.3 Results

Table 9.1 shows the compiled size (in megabytes) and execution time (in seconds)
of the Oberon2 compiler before, during and after descriptional composition. The compiled
size includes the size of the description itself (which is kept with the compiled code) and
does not include the size of the run-time system or basic library. The execution time
also gives a sense of the memory used, because the time for garbage collecting (including
global garbage collects) is included. All times given are averages over ten successive runs
on a lightly loaded HP 715/80 workstation with 64 megabytes of RAM. The current APS
compiler used to implement both the composed and non-composed versions is a prototype
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Module Separate Combined Composed
size time size time size time

Front end 1.68 120 1.68 125 1.68 116

Oberon2 to GCC 1.38 58
GCC Tree 0.44 24 2.29 162 2.12 88
GCC To C 0.63 81

Total 4.12 283 3.96 287 3.80 204

Table 9.1: Measure of Descriptional Composition
(Compiled program sizes are in megabytes; execution times are in seconds.)

and does not generate optimal code; these performance numbers do not compare favorably
with other Oberon2 compilers. The purpose of the performance numbers here is to permit
an evaluation of the relative bene�t of descriptional composition.

The compiler is run on a set of six Oberon2 modules comprising about 200 lines.
They consist of the six modules given in Figures 9.1, 9.2, 9.3, 9.4, 9.5, and 9.7. When com-
piled together, errors messages are only generated for the System module (see Figure 9.8).
These errors are due to the module not having an implementation in Oberon2, and can be
safely ignored.

The time spent reading the input �les is charged to the front end and the time
spent writing the output �les is charged to the GCC to C translation or the composed
translation. The �rst pair of columns shows the sizes and times for the compiler execut-
ing modularly. Before descriptional composition can be applied, the modules taking part
must be combined into a single module and canonicalized. Some of these transformations
may lead to better, some to worse performance. At the same time, combining the modules
permits dead code elimination and constant propagation. In order to separate these e�ects
from descriptional composition, per se, the second pair of columns shows how the modu-
lar compiler would execute if the combined module was implemented without descriptional
composition The �nal pair of columns shows the additional e�ect of descriptional composi-
tion on the combined module. In all cases, the bottom line combines performance numbers
of the front end with the back end. Memory usage in one part of the program may involve
more frequent garbage collections in other parts; therefore the execution time for the front
end is given for each of the three cases.

It is encouraging that the canonicalizations did not cause much loss of performance
in the combined version. In fact, the optimizations possible on the combined version make
simple combination attractive. In particular, many of the GCC tree features were not used
in the Oberon2 compiler and could be eliminated; these include the \complex" type along
with operations for using it, and \union" types, as well as many expression nodes.

The descriptionally composed version runs much faster than either the function-
ally composed version or the combined version. In fact it runs about as fast as the GCC
tree to text transformation alone. This experiment demonstrates the practicality of de-
scriptional composition even in complex situations, when not all intermediate structures
can be composed away. Since descriptional composition is a high-level (almost source-level)
optimization, these bene�ts should carry over to a practical APS compiler.
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MODULE Trees;

IMPORT Texts, Oberon;

TYPE

Tree* = POINTER TO Node;

Node* = RECORD

name-: POINTER TO ARRAY OF CHAR;

left, right : Tree

END;

VAR w: Texts.Writer;

PROCEDURE (t:Tree) Insert* (name : ARRAY OF CHAR);

VAR p, father : Tree;

BEGIN p := t;

REPEAT father := p;

IF name = p.name^ THEN RETURN END;

IF name < p.name^ THEN p := p.left ELSE p := p.right END

UNTIL p = NIL;

NEW(p); p.left := NIL; p.right := NIL;

NEW(p.name,LEN(name)+1); COPY(name,p.name^);

IF name < father.name^ THEN father.left := p ELSE father.right := p END

END Insert;

PROCEDURE (t : Tree) Search* (name : ARRAY OF CHAR) : Tree;

VAR p: Tree;

BEGIN p := t;

WHILE (p # NIL) & (name # p.name^) DO

IF name < p.name^ THEN p := p.left ELSE p := p.right END

END;

RETURN p;

END Search;

PROCEDURE (t : Tree) Write*;

BEGIN

IF t.left # NIL THEN t.left.Write END;

Texts.WriteString(w,t.name^); Texts.WriteLn(w);

Texts.Append(Oberon.Log,w);

IF t.right # NIL THEN t.right.Write END

END Write;

PROCEDURE Init* (t : Tree);

BEGIN NEW(t.name,1); t.name[0] := 0X; t.left := NIL; t.right := NIL

END Init;

BEGIN Texts.OpenWriter(w)

END Trees.

Figure 9.1: Trees module from Oberon2 Report.
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MODULE NewTrees;

IMPORT Texts, Oberon, Trees;

TYPE

NewTree* = POINTER TO NewNode;

NewNode* = RECORD (Trees.Node)

message*: ARRAY 10 OF CHAR;

END;

VAR wr : Texts.Writer;

PROCEDURE (t : NewTree) Write*;

BEGIN

Texts.WriteString(wr,t.message); Texts.WriteLn(wr);

Texts.Append(Oberon.Log,wr);

t.Write^()

END Write;

PROCEDURE Init* (t : NewTree; message : ARRAY OF CHAR);

BEGIN

Trees.Init(t);

COPY(message,t.message);

END Init;

BEGIN Texts.OpenWriter(wr)

END NewTrees.

Figure 9.2: NewTrees module using Trees module.
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MODULE Test;

IMPORT Trees;

PROCEDURE Run*;

VAR

t : Trees.Tree;

t1 : Trees.Tree;

BEGIN

NEW(t);

Trees.Init(t);

t.Insert("first");

t.Insert("second");

t.Insert("third");

t.Insert("fourth");

t1 := t.Search("second"); t1.Write

END Run;

END Test.

Figure 9.3: Driver module for module Trees .

MODULE Test2;

IMPORT NewTrees;

PROCEDURE Run*;

VAR

t : NewTrees.NewTree;

BEGIN

NEW(t);

NewTrees.Init(t,"Hello");

t.Write

END Run;

END Test2.

Figure 9.4: Driver module for module NewTrees.
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MODULE Texts;

IMPORT System;

TYPE

Buffer = POINTER TO ARRAY OF CHAR;

Writer* = RECORD

buf* : Buffer;

fill, len : INTEGER;

END;

PROCEDURE EnsureLength* (VAR w : Writer; len : INTEGER);

VAR newbuf : Buffer; newlen : INTEGER;

BEGIN newlen := len+w.len+10;

IF len < w.len THEN

NEW(newbuf,newlen);

COPY(w.buf^,newbuf^);

w.buf := newbuf;

w.len := newlen;

END

END EnsureLength;

PROCEDURE WriteString* (VAR w : Writer; VAR s : ARRAY OF CHAR);

VAR i : INTEGER; len : INTEGER;

BEGIN len := System.StringLength(s);

EnsureLength(w,w.fill+len);

FOR i := 0 TO len-1 DO

w.buf[w.fill] := s[i];

INC(w.fill);

END;

w.buf[w.fill] := 0X;

END WriteString;

PROCEDURE WriteCharacter* (VAR w : Writer; ch : CHAR);

BEGIN

EnsureLength(w,w.fill+1);

w.buf[w.fill] := ch;

INC(w.fill);

w.buf[w.fill] := 0X;

END WriteCharacter;

PROCEDURE WriteLn* (VAR w : Writer);

BEGIN

WriteCharacter(w,0AX);

END WriteLn;

PROCEDURE Append* (VAR f : System.File; VAR w : Writer);

BEGIN

System.Write(f,w.buf^);

w.fill := 0;

w.buf[w.fill] := 0X;

END Append;

PROCEDURE OpenWriter* (VAR w : Writer);

BEGIN

NEW(w.buf,10);

w.fill := 0;

w.len := 0;

w.buf[w.fill] := 0X;

END OpenWriter;

END Texts.

Figure 9.5: Simple stubs for standard Oberon2 module Texts .
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MODULE Oberon;

IMPORT System;

VAR Log* : System.File;

BEGIN

Log := System.Stdout;

END Oberon.

Figure 9.6: Simple stubs for standard Oberon2 module Oberon2.

MODULE System;

TYPE File* = LONGINT;

VAR Stdout* : File;

PROCEDURE Write* (f : File; VAR a : ARRAY OF CHAR);

END Write;

PROCEDURE StringLength* (VAR a : ARRAY OF CHAR) : INTEGER;

END StringLength;

END System.

Figure 9.7: Headers for some system functions.

system:5 [OBERON2_TREE'value_formal

[OBERON2_TREE'identifier f [OBERON2_TREE'not_exported]] ..]:

Warning: declaration not used

system:5 [OBERON2_TREE'var_formal

[OBERON2_TREE'identifier a [OBERON2_TREE'not_exported]] ..]:

Warning: declaration not used

system:9 [OBERON2_TREE'proc_decl

[OBERON2_TREE'header

[OBERON2_TREE'identifier StringLength #] ..]]:

No RETURN statement for PROCEDURE

system:8 [OBERON2_TREE'var_formal

[OBERON2_TREE'identifier a [OBERON2_TREE'not_exported]] ..]:

Warning: declaration not used

Figure 9.8: Errors generated when compiling system module.
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Chapter 10

Experiences

This chapter describes the status of the APS and Oberon2 compilers. It then
details the author's experiences with APS as a compiler descriptional language, and with
descriptional composition as an optimization technique. Next it outlines some areas for
further work suggested by the results. At the end, this chapter gives the conclusion for the
dissertation.

10.1 Status

The current APS compiler and run-time system are written in about 25,000 lines
of Common Lisp (including comments and blank lines). The parser (mostly machine gen-
erated) is external to Lisp. It reads in APS programs, creates trees in the form given in
Appendix C.1 and writes a fully parenthesized version to be read by Lisp. For historical
reasons, the compiler is built on top of a rewrite of DORA [29], although it uses almost
no facilities of that system except the pattern match compiler. An APS module is trans-
lated into Lisp and is compiled by the native Allegro Common Lisp (Franz Inc.) compiler.
Sometimes, the sheer size of the generated functions can overwhelm the native compiler,
which is optimized for hand-written code. However, this platform has been extremely con-
venient, especially as Common Lisp provides support for pretty-printing internal forms, and
for complicated compile-time macro expansion.

Part of the APS compiler has been rewritten in 10,000 lines of APS itself (mainly
the front end). Some of the modules can be seen in Appendix C. This exercise has been
valuable for a number of reasons. First, the declarative nature of speci�cations ensured that
the type system could be formally described. Second, since APS is a complex language, the
experiment shows that APS is capable of describing the \static semantics" of a language
considerably more complex than Oberon2. Third, several extensions were added to APS
after their use was shown to improve factoring, readability or performance in the APS
compiler.

The Oberon2 compiler consists of a parser (written using the same tools as the
APS compiler's parser) and a front end (including translation to the GCC intermediate
representation) written in APS. The part written in APS (about 6000 lines) is given in
Appendix B. While the compiler has not been fully tested, it compiles a set of six modules
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using arrays, open arrays, bound procedures, inheritance and overriding. The generated C
code is indented for partial readability and it compiles and runs successfully. For example,
the following bound procedure comes from the Oberon2 manual [73]:

PROCEDURE (t : Tree) Write*;

BEGIN

IF t.left # NIL THEN t.left.Write END;

Texts.WriteString(w,t.name^); Texts.WriteLn(w);

Texts.Append(Oberon.Log,w);

IF t.right # NIL THEN t.right.Write END

END Write;

This procedure compiles into the following C function:

void Trees_Node_Write(struct G1992 * T) {

if (((*(T)).left)!=((struct G1992 *)((void *)0)))

{

struct G1992 * G1913 = (*(T)).left;

(*((*((*(G1913))._type_spec)).Write_ref))(G1913);

}

else

{}

{

G1941 G1878 = (*(T)).name;

unsigned long G1879 = (G1878).dim1;

(Texts_WriteString)(&(Trees_w),(G1944){(G1878).dopevector,G1879});

}

(Texts_WriteLn)(&(Trees_w));

(Texts_Append)(&(Oberon_Log),&(Trees_w));

if (((*(T)).right)!=((struct G1992 *)((void *)0)))

{

struct G1992 * G1914 = (*(T)).right;

(*((*((*(G1914))._type_spec)).Write_ref))(G1914);

}

else

{}

}

10.2 Experiences with APS

This section describes experiences in using the APS compiler description language.

10.2.1 Features

At the core of APS is a simple polymorphic functional language. Since experience
with such languages is fairly wide-spread, this section concentrates on those features that
set APS apart from this framework.
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In common with other attribute-grammar systems, APS supports the ability to
decorate trees with attributes. Attributes can be thought of as memoed functions taking
a single value for which object identity is maintained. The ability to use syntax-directed
de�nitions, especially patterns including nested patterns, makes this paradigm attractive,
and even more so helps factor a description by concept.

Collection attributes are extremely useful. For instance, just to give an example
that came up in the last stages of creating the Oberon2 compiler, in the process of con-
verting the GCC intermediate form to C text, it is necessary to generate C \typedefs" for
intermediate language types. These types are scattered throughout the tree, some attached
to expressions, others to explicit type declarations. Since C is a declaration-before-use lan-
guage, it is necessary to generate the \typedefs" in an order that respects this restriction.
In an imperative language, this task would presumably be done by sorting the types into
topological order, but it would be di�cult to locate all the types. In APS, �nding all the
instances of a phylum is done using a top-level match. Then, each \typedef" is generated
with a priority so that it will follow any other typedef that must precede it. All of these
prioritized strings are then placed in a single sorted collection attribute. The resulting
realization in APS is simple and clear. (See Appendix B.7.)

Pattern de�nitions (as described in Section 3.3.1), the ability to name views of
nodes, including the ability to use non-deterministic \disjunctive" patterns, have proved
enormously successful. For example, the simple pattern array_type is used extensively
in the Oberon2 description to factor attribute rules dealing with arrays. Figure 3.1 in
Chapter 3 showed some further ways in which pattern de�nitions were used to factor the
description by concept. The Oberon2 compiler uses over 25 pattern de�nitions. Further
work will be done in describing their contribution outside of the context of APS. Recursive
pattern de�nitions have been less pervasive, although the APS compiler exhibits several
useful instances of recursive pattern de�nitions.

Another innovation in APS of great importance is the procedure. Despite its syntax
and name, an APS procedure is not an imperative function. No other attribute grammar
system to my knowledge has the ability to factor not just expressions but attribution rules

themselves. Appendix B.5 shows several instances of procedures such as the simple proce-
dure ensure_variable or the more complex procedure ensure_type_guard_applicable

that permit checks (and error messages) to be expressed in a single place. Recursive pro-
cedures in APS are essential to the ability to express the standard uni�cation algorithm
declaratively. Currently, procedures interact poorly with lexical prioritization of attribute
rules. Perhaps this conict will be resolved in a later version of APS.

Finally, despite the fact that APS has this feature in common with many other
languages, it must be noted that polymorphism is essential for factoring. Moreover, the
ability, as in APS, of de�ning entities relative to a limited set of types is particularly useful.
They permit polymorphic attributes such as scope in Appendix B.3.2, and also allow the
rule that scopes are inherited by default from the parent to be described in a simple, general
and type-safe manner.
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10.2.2 Possible Enhancements

Since the design of APS was frozen at a certain point, several interesting enhance-
ments had to be set aside. In particular, APS lacks the ability to match the parent of a
node under consideration; pattern matching only goes \down" the tree, never \up." Sev-
eral context-dependent concepts therefore, such as checks that a local procedure value is
only used as the object of a call, must be expressed using attributes. \Upward" patterns
would simplify the expression of such concepts. However, they may also be unintuitive and
confusing.

Higher-order functions are useful, and are provided in APS. They are used exten-
sively in the OBERON2_CONSTANT module given in Appendix B.1.1. However APS does not
permit patterns to be passed as parameters to either functions or modules. The lack of
\�rst-class" status for patterns makes factoring harder in some situations where a function
applies to several di�erent nodes in an analogous manner. Without \�rst-class" patterns,
dangerous redundancy can creep in.

Currently, patterns are implemented using success continuations, but the power is
not used. For instance, pattern matching is often used to take some value out of a structure,
and then a function is applied to it and pattern matching used on the result. For example:

match ?ty1=named_type(?using) begin

case using.use_decl begin

match type_decl(?,?ty2) begin

ty1.base_type := ty2.base_type;

end;

end;

end;

If one could de�ne a pattern use_decl that could match on the attributes of a node, one
could express this rule as follows:

match ?ty1=named_type(use_decl(type_decl(?,?ty2))) begin

ty1.base_type := ty2.base_type;

end;

If patterns could be generalized to include the power of CLU-style iterators, such a pattern
could be de�ned as follows:

pattern use_decl(d : remote Declaration) : Use begin

case result.use_decl begin

match ?d begin

yield;

end;

end;

end;

The inside-out nature of patterns|the fact that patterns take a result and produce values
for the arguments|may make such an extension opaque.
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None of these enhancements change the language dramatically, but neither do they
reect serious expressive failures of the language. It seems then that most of the features one
would desire in a declarative compiler description language are present. Considering there-
fore the execution times of descriptions implemented by the current APS compiler, it would
seem that future e�ort with APS should be expended in more e�cient implementation.

The prototype implementation uses closures extensively. Every attribution clause
is implemented as a function that executes everything that cannot cause demand evaluation.
Any other statement (for example a conditional that tests possibly unevaluated attributes)
is converted into a closure. This closure is used as a guard thunk on every attribute instance
that could be de�ned by the statement. The closure, when invoked, evaluates the needed
expression and then behaves as an attribution clause, possibly generating further closures.
This use of closures requires little analysis, but uses space and time proli�cally. Finally
attribute de�nition usually involves storing a closure on the worklist of an attribute instance.
Possibilities for better implementation include using more e�cient methods for common
simple cases, and using state-carrying coroutines rather than closure-creating closures.

10.2.3 Writing and Reading Descriptions

For the most part, APS has been a convenient language for writing descriptions.
The Oberon2 compiler was able to be expressed at a similar level to the English report.
The type-checking rules, for example, were given in approximately the same order as in the
report, and were not much longer. The APS front end in Appendix C was harder to write,
but that was because the language was changing while the description was being written.

Since APS does not require declaration before use, and only uses lexical order
for de�nition precedence, the description writer is free to organize the declarations in al-
most any order. It's not immediately clear what conventions should be followed for best
comprehensibility.

The rule that earlier de�nitions take precedence over later de�nitions was chosen
to approximate the e�ect of \if" and \case" statements in a variety of languages. This
choice has the opposite e�ect of repeated de�nition (assignment) in imperative languages.
Nevertheless, one reason to believe that the correct choice was made is that exceptions must
always be placed before the general rules; if one reads the rules in order, no rule can be
contradicted by a later rule.

APS encourages descriptions to be factored by concept rather than by type of node
in the tree being attributed. As a result, if one wishes to learn from a description what
computations are carried out on a particular node, one must read the entire description,
being careful to look for pattern de�nitions that match the node in question. This fact
may seem a deleterious e�ect of factoring by concept. However, factoring by node can be
accomplished by an automatic process, perhaps in a browser, whereas factoring by concept
cannot be done automatically. Moreover, in order to understand a description, one should
�rst learn the concepts described rather than the details of what \happens" at each node
in the tree.

APS does not require dependencies to be statically analyzable as noncircular. This
approach contrasts with Maddox's Colander2. Even though the Colander2 compiler uses so-
phisticated static analysis, it is still necessary to contort the description to avoid circularity.
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Portions of the grammar of Modula2 need to be duplicated, and certain computations must
be carried out using tree-walking functions rather than using (simpler) attribute equations.
It remains to be seen how a mix of statically analyzable and unanalyzable dependencies can
be implemented e�ciently. In any case, the choice taken for APS makes descriptions much
easier to write, and to understand.

10.3 Discussion of Descriptional Composition

Descriptional composition is a tool of implementation, it does not change the
semantics of the modules being composed. It is interesting only when it improves some
measure of program performance. In the case of the Oberon2 compiler, there is a sizable
improvement in speed.

10.3.1 Analysis

The bene�ts of descriptional composition are twofold: �rst, an intermediate struc-
ture need not be constructed and then traversed; second, the action of combining two
modules permits more computation to be carried out at description compile-time. Logi-
cally, however, the descriptionally composed module does all the work of the modules that
make it up. In particular all the computation carried out on the intermediate structure that
was removed is still carried out, only it has been translated to apply to a di�erent source
structure. For example, the GCC tree package includes attributes for computing the types
of expression nodes. This computation is still carried out in the descriptionally composed
Oberon2 compiler, but with composed attributes operating on the Oberon2 abstract syntax
tree.

Since there is often not a one-to-one correspondence between the nodes in the input
and output trees in the �rst stage, the computation that is moved to the �rst stage may be
more complex, that is may require more attributes. For example, even after optimization
gets rid of composed attributes that are not needed, the composed version of the Oberon2
back-end still has more attributes (about 100) than all the attributes (about 60) of the
modules that were composed to produce it. As a result, implementing the composed version
may be more di�cult than implementing the modules separately.

Descriptional composition has the most potential for bene�t when one or both of
the following situations apply:

1. The time spent constructing and traversing the intermediate form is a signi�cant
amount of the time used in the modules being composed. This situation was true
for all previously reported instances of descriptional composition [13, 14, 39, 41], but
is not particularly valid for the Oberon2 compiler described here, since many more
attributes (that is, computation) are involved.

2. The composition admits considerable compile-time evaluation and simpli�cation. This
situation is manifestly true for the Oberon2 compiler. The size of the composed
description was reduced by 75% by compile-time simpli�cations.
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In other situations, where much of the work does not involve creating and traversing in-
termediate structure and where few simpli�cations can be performed at compile-time, it is
unlikely that descriptional composition will show much bene�t.

10.3.2 Looking Beyond Descriptional Composition

As described in the introduction, the motivation for investigating the technology
of descriptional composition stems from the desire to see e�cient implementation of highly
factored compiler descriptions. In particular, compilers are easier to modify and reuse if
they consist of a large number of modular stages. Descriptional composition, however, only
addresses some of the issues that arise.

For example, suppose a compiler stage produces an output tree very similar to its
input tree by performing a straightforward canonicalization. If the input tree was highly
decorated (with type and binding information, for example), and these decorations are
needed for further processing, it will then be necessary to re-decorate the output tree before
performing the next stage. While this task can be easily described by reusing a decoration
module, it would nevertheless involve computation on this new tree. If the stage were then to
be composed with a following stage, descriptional composition only moves the computation
back to the input tree, it does not get rid of it.

The problem, however, of redecorating a transformed tree has been extensively
treated in the literature on incremental attribution mechanisms. Although incremental
systems work dynamically to bring decorations up to date after a transformation, typical
implementations use static analysis of possible changes for greater e�ciency. One can
thus envision that such analysis could be applied to descriptions of the transformation
and the decoration. The result would be a specialized version of the decoration module
that uses the result of the previous decoration. Such an application of the technology of
incremental attribute update in new setting would nicely complement the work performed
by descriptional composition.

10.4 Further Work

The APS project is not complete; there are several tasks that I hope to accomplish
subsequently. I hope to bring the boot-strapping process to completion. Then, after com-
piling the compiler with itself (no mean feat given the memory requirements), APS could
be weaned from Common Lisp. That would permit APS to be more easily distributed to
other researchers.

The APS type checker requires �ner dependency analysis than is provided by
dynamic dependencies in the current APS compiler and run-time system. Currently, the
module is implemented by turning o� a safety check and adding extra dependencies (in an
isolated section of the module). A technique for determining the necessary dependencies
must be developed and implemented.

The current APS compiler performs some global dependency analyses, in partic-
ular it places a module's entities in a total order of strongly-connected groups of mutually
dependent attributes and functions. If pattern matching is removed as described in Sec-
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tion 3.4.4, �ner, production-level analysis in the style of other attribute-grammar based
systems would then be possible. However, the two major existing APS programs (the
Oberon2 and APS compilers) make heavy use of dynamically non-circular attributes, which
will appear circular to any static analysis system. Moreover, remote attribution requires a
form of �bering analysis. How to accomplish such analysis is still unclear (and more ground
for further work). Earlier work [11] shows that �bering analysis can be adapted to collection
attributes, but this technique has not been tested on anything save the smallest examples.
Maddox [70] has implemented a method based on isolating circular dependencies in regions.
It remains to be seen which method or methods are practical.

On a di�erent note, the current GCC tree intermediate language is implemented
through a translation to C source text. One of the �rst changes needs to be a translation
of switch statements; the semantics used by the GCC compiler is unclear, and so they were
omitted. Once this translation is complete, the next task is to attach the GCC tree package
in APS directly to the GCC compiler back end. This task is made more di�cult by the
nature of the current interface in the GCC compiler|half structural and half procedural
with some highly convoluted memory management thrown in for good measure. However,
accomplishing this task would bring rewards because it would enable more e�cient com-
pilation and also provide the only clean interface to the GCC back end for front ends.
Completing this task would make APS attractive to compiler researchers.

10.5 Conclusions

I embarked upon this research in order to determine whether descriptional compo-
sition could be applied usefully in realistic situations. While this goal was accomplished with
the conclusion that it was indeed useful, along the way, the importance of a good declara-
tive description language became evident. Attribute grammars are wholly insu�cient as a
vehicle for expressing compilers and related systems. Thus many of the contributions of the
research and of this dissertation are in demonstrating the need for speci�c extensions and
showing how they can be implemented. As a compiler description language, APS seems
fairly complete. More pressing, therefore, than further extension is better implementation.

The success of descriptional composition in a realistic setting is encouraging. More-
over, it appears that incremental attribution technology could nicely complement descrip-
tional composition in the practical implementation of modular compiler descriptions.
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Appendix A

Summary of APS

This appendix describes in brief the features of APS. Appendix C gives a de�nition
in APS of the type system. The syntax is given with typewriter font templates with italic

slots. The syntax to be used for a slot may be given in a parenthesized cross-reference.
Optional portions are surrounded by italic braces [ ] ; zero or more repetitions are indicated
using an italic star * ; alternatives are separated by a slash /; italic parentheses ( ) are used
for grouping. The syntax

nonterminal ::= : : : / template

is used to give an additional template for a nonterminal.
Section A.11 gives a listing of prede�ned entities.

A.1 Namespaces

The APS description language has four namespaces: signatures, types, patterns
and values. A signature is a speci�cation of services that may be accessed through a type
that satis�es the signatures. A type includes an implementation of services and if it is a
phylum, contains all the nodes created in the type. A service (of any namespace) may be
fetched from a type using the syntax type$service. A pattern is a partial speci�cation of
the form of a value. Every value has a type.

Section A.2 speci�es all the named entities introduced by declarations. The next
four sections describe the syntactic units that correspond to the four namespaces: signa-
tures, types, patterns and expressions.

A.2 Named Declarations

There are three classes of declarations; this section describes named declarations:

declaration ::= named' | unnamed(A.7) | clause(A.8)
named' ::= [ var / private / public] named

The name of a declaration is a string of alphanumeric characters (including _)
starting with an alphabetic character. Names introduced in the signature namespace are
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conventionally all uppercase. Types and phyla are given capitalized names; all other decla-
rations are all lowercase. The following names are reserved words:

and, attribute, begin, case, circular, class, collection, constant,

constructor, elscase, else, elsif, end, endif, extends, for,

function, if, in, infix, infixl, infixr, inherit, input, match,

module, not, on, or, pattern, phylum, pragma, private, procedure,

public, remote, signature, then, type, var, with

The reserved words constant and elscase are not currently used in APS syntax. The
keywords infix, infixl, infixr and with are used in situations not described in this
appendix. A reserved word may be used as a name if surrounded by parentheses.

A contour (declaration scope) may not have two entities with the same name and
namespace unless that name is the special name _ (declarations given this name cannot be
referred to). A declaration in a nested contour shadows (makes inaccessible) declarations
of the same name and namespace in outer scopes. In other words, APS uses standard
Algol-style lexical scoping.

Any declaration declared in a module or class is either public or private. Enti-
ties are public unless otherwise indicated by pre�xing the declaration with the keyword
private. This default behavior is switched by the declaration \private;" for all following
declarations; then a public entity must be declared using the keyword public.

A public declaration in a module or class may be declared var, or else it is implicitly
declared constant . Constant variable declarations may not be de�ned (that is, assigned
using := or :>). Constant declarations must not depend on var declarations.

Each declaration ends with a semicolon, so lists of declarations need no separation
character.

A.2.1 Class Declarations

A class declaration has the form

named ::= : : : /
class name [type-formals(A.2.14)] [ result-name] [ :: signatures(A.3)] [ begin

top-level*

end];

top-level ::= named / unnamed(A.7)

Class declarations introduce names in the signature namespace. A signature is produced
when a class is instantiated (see Section A.3.1). Within the scope of the class, the type
satisfying the signature may be referred to as result-name (or Result, if no name is given).
Any type satisfying the signature also satis�es the parent signatures (the ones after the
double colon \::"). If the parent signatures contain var or input capabilities, these ca-
pabilities are only present for instantiations of the class with the respective capabilities
(see Section A.3.1). Classes are only used to specify interfaces for modules; they are not
executed at run-time.
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A.2.2 Module Declarations

A module declaration has the form

named ::= : : : /
module name [type-formals(A.2.14)] [ (value-formals(A.2.13))] [:: signatures(A.3)]

[ phylum] [ result-name] [ extends type(A.4)]
[ begin

top-level* (A.2.1)
end];

A module declaration introduces a name in both the signature and type namespaces.
A module may be instantiated in the same way as a class to form a signature;

no value parameters are given in this case. Alternatively, a module may be instantiated
as a type (see Section A.4.1), in which case any value parameters must be supplied. The
type resulting from instantiating a module as a type satis�es by construction the signature
resulting from instantiating the module as a signature.

Within the scope of the module, the type being created is visible as result-name

(or Result, if no name is given). The type is created as an extension of a base type, or is
a new type (see Section A.2.4). An extension of a type is equal to it for the purposes of
type-equality, but may provide additional services. Any services provided by the extension
(through its inferred signatures) are visible in a virtual contour around the body of the
module.

Procedures, types, or variables declared outside the scope of the module cannot
be called, modi�ed (see Section A.4), or de�ned respectively inside the body of the module.

Any parent signature (or parent of a parent signature etc.) speci�ed in the module
declaration must be satis�ed either by the type being extended, or by matching the entities
exported by the module against the entities declared in the signature. See Section A.10 for
the operation of matching.

A module cannot be passed as an actual type parameter.

A.2.3 Signature Declarations

A signature declaration introduces a name in the signature namespace:

named ::= : : : / signature name := signatures(A.3);

Any type that satis�es signatures also satis�es this new signature. In other words, this
declaration does not introduce a new signature; it only provides a way to give a name for
a list of signatures.

A.2.4 Type Declarations

A type declaration declares either a new type or a computed type. The �rst kind
of type declaration has the form

named ::= : : : / type name;
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This declaration binds name to a new type with signature var input TYPE[] (see Sec-
tion A.3.1). Constructors may be declared for such a type (see Section A.2.10).

The second kind of type declaration (a computed type declaration) has the form

named ::= : : : / type name [ :: signatures(A.3)] := type(A.4);

This declaration binds name to the type. If no signatures are given, the signatures are
inferred from the type. If signatures are given, the type must satisfy them. By giving the
signatures therefore, the new type declaration cannot have more signatures than the type
from which it is computed.

A.2.5 Phylum Declarations

A phylum is a special kind of type with the the property that all its instances may
be matched using a top-level match (see Section A.7.3). There are restrictions on what
operations can be performed on a value whose type is a phylum.

As with type declarations, a phylum declaration declares either a new phylum or
a computed phylum. The �rst kind of phylum declaration has the form

named ::= : : : / phylum name;

This declaration binds name to a new phylum with signature var input PHYLUM[]. Con-
structors may be declared for this phylum (see Section A.2.10).

The second kind of phylum is the same as a computed type declaration:

named ::= : : : / phylum name [ :: signatures(A.3)] := type(A.4);

This type must be a phylum.

A.2.6 Variable Declarations

Variable declarations introduce names in the value namespace. A variable decla-
ration has the form:

named ::= : : : / [ input] [ circular] [ collection] name : type(A.4) [ predef ]

predef ::= := default / :> init,combine

Here default , init or combine are all expressions (Section A.6). If the variable declaration
is declared as circular, the type must satisfy the LATTICE[] signature. A composition
default (init and combine) may only be given for a non-circular collection variable. The
�rst part (init) gives the initial value for the collection and the second part (combine)
gives the combining function. If no initial value or no combining function is speci�ed for a
non-circular collection variable, the type must satisfy the COMBINABLE[] signature, and the
missing values are fetched from the type. An input variable may be de�ned external to the
module, assuming the type from which the variable is fetched has the appropriate signature
with input capability (see Section A.3.1).
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A.2.7 Attribute Declarations

Attribute declarations also introduce names in the value namespace. An attribute
declaration has the form:

named ::= : : : /
[ input] [ circular] [ collection] attribute

( phylum(A.4) / (value-formal(A.2.13))).name : type(A.4) [ predef (A.2.6)]

The phylum decorated by this attribute is speci�ed in one of two ways. Either it is speci�ed
directly (the �rst choice) or indirectly, as the type of a value formal (the second choice).
The phylum must satisfy the var PHYLUM[] signature. The default value or initial value
must not include procedure calls. The same restrictions apply to attributes as to variable
declarations (Section A.2.6) The value formal may be used in the default or initial value.

An attribute declaration declares a variable (or slot) for every node of the phylum
being decorated. An attribute declaration introduces a function that may be used to access
the variables. (As explained in Section A.6.2, the syntax node.attr may be used as syntactic
sugar for attr(node)). These variables may be de�ned inside the module; additionally if
the attribute is declared as input, they may be de�ned external to the module as an input
service. When fetched from types, uses of the variables are var services. Thus an attribute
declaration not declared input is indistinguishable outside the module from a var function.

A.2.8 Function Declarations

A function declaration introduces a name in the value namespace and has the
form:

named ::= : : : /
function name(value-formals(A.2.13))

[ collection] [ result-name] : type(A.4) [ predef (A.2.6)]
[ begin declaration* end] ;

Within the scope of the function, the result being computed is available as the variable
result-name (or result if no name is given). Functions are strict ; a function body is
not instantiated until the arguments are computed. On the other hand, a function call
is presumed monotonic in arguments whose types satisfy the signature LATTICE[], if the
result has a lattice type and the call used monotonically.

Procedures, types, or variables declared outside the scope of the function cannot
be called, modi�ed, or de�ned respectively inside the body of the function.

A.2.9 Procedure Declarations

A procedure declaration introduces a name in the value namespace and has the
form:

named ::= : : : /
procedure name(value-formals(A.2.13))

[ [ circular] [ collection] [ result-name] : type(A.4) [ predef (A.2.6)] /



158

(variable-declarations(A.2.6))]
[ begin declaration* end] ;

A procedure may have no results, one result (whose name by default is result) or mul-
tiple results. Procedures are non-strict ; a procedure body may be instantiated before the
arguments are computed. A procedure is e�ectively called exactly once per instance of a
call site. That is, a single call can never lead to the e�ect of two calls, nor can two calls be
coalesced into one. A procedure cannot be passed as a parameter nor assigned to a variable.

A.2.10 Constructor Declarations

A constructor declaration introduces its name in both the value and pattern names-
paces. It has the form:

named ::= : : : / constructor name(value-formals(A.2.13)) : type(A.4);

The type must be a new type declared in the same context (function or module) as the
constructor. A constructor creates a node when called as a function or a procedure. This
node is distinct from any node created by any other constructor. The types of the formal
parameters must satisfy the signature BASIC[].

If type is not a phylum, then none of the formal parameters types may be phyla
(although remote types are permitted (Section A.4.2)). When used as a value, such a
constructor is treated as a function. Equality for nodes created by such constructors is
structural: two nodes are the same if they were created by the same constructor with the
same parameters.

If type is a phylum, then every formal parameter with a phylum type is a child

parameter. The phylum of any child parameter must satisfy the signature input PHYLUM[],
because becoming a child has rami�cations for a node (for example, it a�ects its lexical
ordering). When used as a value, a constructor is treated as a procedure. Nodes created
by such constructors have identity ; each instance of a constructor call creates a new node.
Equality for such nodes uses node identity. The node created by the constructor is the
parent for each actual parameter corresponding to a child formal parameter. No child may
have more than one parent. The prede�ned polymorphic pattern parent matches a node
with a child.

When used as a pattern, a constructor call only matches nodes created by the
constructor. The pattern arguments are then matched against the actual arguments to the
constructor when the node was created.

A.2.11 Pattern Declarations

A pattern declaration introduces a name in the pattern namespace and has the
form:

named ::= : : : / pattern name(value-formals(A.2.13)) : type(A.4) := choices(A.5);

Each pattern in choices (a comma-separated sequence of patterns) must bind every name
that appears as a formal parameter in the pattern declaration.
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A pattern call matches any node that matches one of the choices where the actual
parameters are matched against the binding produced by the choice. All possibilities are
attempted. However, if used in the context of a case clause (Section A.8.4), possibilities
are attempted only until a complete match is found.

Pattern declarations may not be mutually recursive, and a recursive pattern dec-
laration must be bottom-linearly recursive (see Section 3.3.2).

A.2.12 Renamings

A renaming declaration has one of the forms:

named ::= : : : /
class name = use; /
signature name = use; /
module name = use; /
type name = use; /
pattern name = use0; /
name = use0;

use ::= name / type(A.4)$name

use0 ::= use / (use : type(A.4))

The last form of renaming is a value renaming.
A renaming introduces a new name in the respective namespace (a module renam-

ing introduces a name in the type namespace). This name refers to the same entity referred
to by the use. Value and pattern renamings must use an explicit typing to disambiguate
polymorphic uses (see Section A.7.2).

A.2.13 Value Formals

A value formal parameter has the form:

value-formal ::= ( name/_) : type(A.4)

If the name is given as _, the formal parameter cannot be used.

Two or more value formal parameters with the same type may be speci�ed with
the form:

value-formal ::= : : : / names : type(A.4)

The names must be comma-separated. Value formal parameter declarations are separated
by semicolons.

A.2.14 Type Formals

A type formal parameter has the form:

type-formal ::= [ phylum] name [ :: signatures(A.3)]
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Two or more type formal parameters with the same signatures may be written with the
form:

type-formal ::= : : : / [ phylum] names :: signatures(A.3)

The names must be comma-separated. Type formal parameter declarations are separated
by semicolons.

A name of a type formal may be used in the signatures of any type formal in the
same list of type formals.

A.3 Signatures

A signature may be speci�ed by a use of a named signature (Section A.2.12), or by
a class instantiation or �xed signature. Sequences of signatures are separated by commas.
It is an error if a sequence of signatures contains two or more services in the same namespace
with the same name.

A.3.1 Class Instantiation

A class may be instantiated to yield a signature:

signature ::= : : : / [ var] [ input] class[types(A.4)]

The type actuals are not checked for conformance to the type formals of the class; confor-
mance is unneeded since classes do not contain implementations.

If the var capability is present, var services are available. Likewise if the input

capability is present, input services are available. Type formals may not be declared with
both var and input for the same class.

A.3.2 Fixed Signatures

A �xed signature is described as a set of types:

signature ::= : : : / {types(A.4)}

All the types is the set must be distinct. Any type from the set satis�es the signature and
no other type does.

A.4 Types

A type may be speci�ed by a use of a named type or by one of the forms given
in this section. The signatures of a type fetched from another type cannot be inferred, but
can be checked. Thus a fetched type must be assigned as a computed type with explicit
signatures before it can be used to fetch other services. For instance, T$U$V is never legal
because no signatures can be inferred for T$U. This rule prevents a circularity in name
resolution.

Fetching an input service from a type modi�es the type. Types may only be
modi�ed in certain situations (the same situations in which procedures may be called).
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A.4.1 Module Instantiation

A module may be instantiated only directly in a computed type or phylum decla-
ration (see Sections A.2.4 and A.2.5).

type ::= : : : / (type/phylum) name [ :: signatures] := module[types][ (exprs(A.6))]

The actual type parameters are checked for conformance with their respective formal type
parameters, and similarly for the value parameters. If the type created by the module
extends a formal type parameter, the result of the instantiation extends the corresponding
actual type parameter.

A.4.2 Node Reference Types

A type for node references has the following form:

type ::= : : : / remote phylum(A.4)

This type is not a phylum but it is equal to the phylum for the purposes of type checking,
and satis�es the same signatures as the phylum.

A.4.3 Private Types

A private type has the form:

type ::= : : : / private type(A.4)

The private type satis�es the same signatures as type, but is not considered equal to any
other type.

A.4.4 Function Types

A function type has the form:

type ::= : : : /
function (value-formals(A.2.13)) [ : type / (variable-declarations(A.2.6))]

Function types do not satisfy any signatures and may not be passed as actual type param-
eters.

A procedure is considered to have a function type only for the purpose of an ex-
plicitly typed polymorphic use (see Section A.2.12). Attributes and functions have function
types with one result type.

A.5 Patterns

A pattern must have one of the forms given in this section. No procedures may
be called in expressions occurring in patterns.



162

A.5.1 Pattern Calls

A pattern call has the form:

pattern ::= : : : / use(A.2.12)(pattern-actuals)
pattern-actual ::= pattern / name := pattern / ...

The patterns actuals in the pattern call are separated by commas.
If a pattern actual is a keyword parameter (the second possibility), name must be

the name of a parameter for the pattern or constructor named in use. Furthermore all later
pattern actuals must be keyword parameters too, but not all formals must be matched. The
third possibility ... may only be used as the last pattern actual and matches any remaining
formals.

A.5.2 Pattern Variables

A pattern variable has the form:

pattern ::= : : : / ?[ name] [ : type(A.4)]

A pattern variable matches any node (of the correct type). If no type is given, the type is
inferred from the context. The scope of a pattern variable is the entire pattern in which
it occurs and any attached block of declarations (if the pattern variable is in a pattern
governed by match). A name may not be bound more than once in a pattern.

A.5.3 Conjunctive Patterns

A conjunctive pattern has the form:

pattern ::= : : : / pattern & pattern

A conjunctive pattern only matches if both of the subpatterns match. The two subpatterns
must have the same type.

A.5.4 Conditional Patterns

A conditional pattern has the form:

pattern ::= : : : / pattern if expression(A.6)

This pattern matches only if the pattern matches and the (boolean) expression evaluates
to \true."

A.5.5 Value Patterns

A value pattern has the form:

pattern ::= : : : / !expression(A.6)

Value patterns only match a value equal to the one in the expression. A value pattern is
sugar for the following form:
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?name if name=expression

where name is a newly created unique name.

The exclamation point may be omitted from a value pattern with a literal value
(see Section A.6.1).

A.5.6 Type-Test Patterns

A type-test pattern has the form:

pattern ::= : : : / pattern :? type(A.4)

Here type must name a type formal with a �xed signature (Section A.3.2). The type of the
pattern must be a type in the set speci�ed in the �xed signature. A type-test pattern only
matches if the type of the pattern is equal to the actual type parameter given for the type
formal.

A.5.7 Sequence Patterns

A sequence pattern has the form:

pattern ::= : : : / [ type(A.4)$]{elem-patterns}

elem-pattern ::= pattern / ... [ and pattern]

Here elem-patterns is a comma separated sequence of elem-pattern. A pattern used after
... and is called a constraint pattern.

The type of the sequence pattern (type if given, otherwise inferred) must satisfy
a signature READ_ONLY_COLLECTION[elem-type] for some type elem-type. Each element
pattern must have type elem-type. The pattern ... used in a sequence pattern matches
any number of element patterns, each of which must match the constraint pattern, if one is
given. The scope of pattern variables in the constraint pattern is limited to that pattern.

A.6 Expressions

An expression may be a use of a name in the value space, or one of the forms
mentioned in this section.

A.6.1 Literals

An expression may take the form of a literal string (surrounded by double quotes),
character (surrounded by single quotes), real or integer. The types of such literals are
respectively String, Character, Real and Integer as prede�ned in Section A.11.
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Precedence Operators Associativity

-3 and left

-2 or left

-1 in not non associative

0 .. left

3 && || right

4 /= < <= == > >= << >> <<= >>= non associative
|<| |<=| |>| |>=|

5 \\ ++ right

6 + - (all unary operators) left

7 * % / left

8 ** ^ ^^ ^^= right

9 (all other operators) left

Table A.1: Operators in APS

A.6.2 Function Calls

A function call has the form:

expr ::= : : : / expr(exprs)

Alternatively, if the function has only one parameter, it may be called using the syntax:

expr ::= : : : / expr.use(A.2.12)

Functions, procedures, attributes and values with function type may be called.
Procedure calls are not permitted in certain constructs.

A.6.3 Operations

Certain function calls can be written using pre�x or in�x notation. Table A.1 lists
all in�x operators with their precedence (higher numbers have tighter precedence). The
name of the function is the same as the binary operator. Unary operators are pre�xed with
# to give the name. To use an operator as a name, it must be enclosed in parentheses.

A.6.4 Implicit Reductions

If exactly one of the two arguments to a function is a sequence expression (see
Section A.6.6), the function call is an implicit reduction over the sequence. The other
argument is the base case. Reduction starts from the end of the sequence if the sequence is
the �rst argument, otherwise it starts from the start.
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A.6.5 Comprehensions

Comprehensions have the form:

expr ::= : : : / [ type(A.4)$]{comps}

comp ::= expr(A.6) / seq(A.6.6)

Each element of the comprehension is either a normal expression or a sequence expressions.
The elements are separated with commas.

A comprehension expression creates a value of a type that satis�es a signature
COLLECTION[elem-type] for some type elem-type. If the context of this expression does not
determine the type, it must be given in the comprehension expression. Each element must
have the type elem-type.

A.6.6 Sequence Expressions

Sequence expressions have one of the following forms:

seq ::=
expr(A.6)... /
seq(A.6.6) if expr /
seq for name [ : type] in expr /
expr(seqs)

Sequences of sequence expressions are separated by commas.
The �rst form of sequence expression, a repeat sequence, uses all the elements of

a collection in sequence. This sequence expression has the element type of the collection
as its type. The second form conditionally uses a sequence of values, and has the type of
the sequence. The third form, an explicit map, uses a sequence expression for each element
of a collection. Here name is bound for each element in the collection given and is visible
in the sequence expression. The type of the explicit map is the type of the body , that is,
the sequence expression, seq . The last form is an implicit map and applies the function to
elements of the respective sequences. There must be at least one argument, and if there
is more than one argument the sequences must be formed from the same collection (see
Section 4.3.3 for details). The type of an implicit map is the return type of the function.

A.6.7 Pragma Expressions

Pragma expression include several forms not permitted in normal expressions:

pragma-expr ::=
class use(A.2.12) /
module use /
signature use /
type use /
pattern use' (A.2.12) /
expr(A.6)

These forms refer to the declaration so named, and are not a�ected by replacements (see
Section A.7.1).
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A.7 Other Top-level Declarations

APS includes other unnamed declarations that may be used in the top-level of a
module or �le.

A.7.1 Inherit Clauses

An inherit clause takes the form:

unnamed ::= : : : /
inherit module[types(A.4)][(exprs(A.6))] begin

top-level* (A.2.1)
end;

The module must be a use of a named module. It may not represent a module fetched from
a type.

The inherit clause is replaced by a copy of the module, with some changes. In
particular, the names declared in the module are only visible to declarations declared in
the inherit clause. The names introduced by these declarations are visible in the context
surrounding the inherit clause. Renaming are often used to make an inherited entity visible
outside the inherit clause.

The sequence of declarations may include replacements . A replacement has one of
the forms:

replacement ::=
type name -> use(A.2.12); /
pattern name -> use' (A.2.12); /
name -> use' (A.2.12);

Replacements do not introduce names; they a�ect the binding of names in the module being
inherited. The name on the left of the replacement must be visible in the module being
inherited (that is, declared in the module, or external to the module). Any use of the entity
thus named in the module is replaced by the use given in the replacement. De�nitions and
declarations are not replaced. Neither are uses in pragma calls (Section A.7.4). A value or
pattern may be replaced only by another with the same type. A type may be replaced only
by another type satisfying the same signatures. Additionally, unless the type is declared
local to the module being inherited and is a private type (Section A.4.3) or a new type
(Section A.2.4), the type being replaced must be equal to the replaced type.

A module declared locally to the module being inherited may be inherited itself.

A.7.2 Polymorphism

Polymorphic declarations are declared in special polymorphic blocks:

unnamed ::= : : : /
[type-formals(A.2.14)] begin

declaration*

end;
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If there is only one declaration, the begin and end may be omitted.

Any names introduced in declaration* are introduced in the context surrounding
the polymorphic block. Any use of a name somewhere outside the block is a polymorphic

use and the context of the use must determine actual type parameters for the formal type
parameters of the block. The inferred types must conform to their respective type formals.
Only patterns and values may be used polymorphically, all other polymorphic uses are
illegal.

If all the type formals satisfy �xed signatures (Section A.3.2) then the block is
�nitely polymorphic, otherwise it is in�nitely polymorphic. The only declarations that may
be nested in an in�nitely polymorphic block are other polymorphic blocks, function and pat-
tern declarations, pragma calls, renamings and replacements. Polymorphic blocks nested
in in�nitely polymorphic blocks are restricted as if they were in�nitely polymorphic them-
selves.

A �nitely polymorphic block is instantiated for each sequence of types that satisfy
the type formal signatures.

A.7.3 Top-Level Match

A top-level match has the form:

unnamed ::= : : : /
match pattern(A.5) begin

declaration*

end;

Top-level matches are currently legal only in modules.

The type of the pattern must be a phylum, and must satisfy the signature
var PHYLUM[]. A top-level match is instantiated for every node of the phylum that matches
the pattern and for every set of bindings that match.

A.7.4 Pragma Call

A pragma call has the form:

unnamed ::= pragma name(pragma-exprs(A.6.7));

A pragma may direct optimizations or analysis, but does not change the semantics of a
description. A use in a pragma is not a�ected by replacements (Section A.7.1).

A.8 Clause Declarations

The following types of declarations are not currently permitted in the top-level
of modules or �les, but they are permitted in match clauses, function declarations and
prtocedure declarations.
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A.8.1 De�nitions

A de�nition takes the form:

clause ::= : : : / expr(A.6)l (:=/:>) expr r;

The special variable _ may be used as the target (l-value) of a de�nition if the value being
assigned is to be ignored. This situation is only useful when the right-hand side has a
procedure call or the left-hand side is a sequence expression.

The following forms of assignment may use sequence expressions:

clause ::= : : : /
expr1, expr2 for name in c (:=/:>) expr3 for name0 in c, expr4; /
expr1 for name in c, expr2 (:=/:>) expr3, expr4 for name0 in c;

These forms are bucket-brigade assignments (see Section 4.3.4). Each side of a bucket
brigade expression refers to n + 1 l-values or r-values, where n is the length of the ordered
collection c used on both sides of the assignment. The semantics of the assignment is
that each l-value is de�ned with its corresponding r-value. For example, if the collection l

consists of the two nodes n1 and n2, then

n.index for n in l, count := 0, n.index+1 for n in l;

has the e�ect of

n1.index := 0;

n2.index := n1.index+1;

count := n2.index+1;

De�nitions using the symbol :> may only be used for variables as collections (see
Section A.2.6). The values speci�ed in all the de�nitions of such variables are combined
with the initial value to give the �nal value of the variable.

De�nitions using the symbol := may only be used for variables not declared as
collections. The lexically �rst de�nition of a variable is used for its value. Other de�nitions
are ignored. It is an error if two de�nitions arise from the same lexical position. Such an
error may arise if the de�nition is instantiated more than once.

A.8.2 Procedure Call

A procedure call takes the form:

clause ::= : : : / use' (A.2.12)(exprs)[@(exprs)];

The optional part is to be omitted if the procedure has no result values.1

The �rst sequence of expressions are actual parameters for the procedure call; the
second sequence consists of l-values to be assigned the results of the procedure call.

1The current APS compiler only accepts calls to such procedures.
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A.8.3 Conditional

A conditional declaration has the form

clause ::= : : : /
if expr(A.6) then

declaration*

(elsif expr then

declaration* )*

[ else

declaration* ]

endif;

The conditional selects the set of declarations to execute depending upon the value of the
conditional expressions. Each declaration depends monotonically on its guarding condi-
tion as an OrLattice, and monotonically on all preceding conditions as AndLattice's (see
Section 7.2.4).

A.8.4 Pattern Matching

Pattern match clauses take the form:

clause ::= : : : /
(case/for) expr(A.6) begin

(match pattern(A.5) begin

declaration*

end;)*

[ else

declaration* ]

end;

An else clause is legal only for case pattern matches.
A case clause selects the declarations to execute depending on the value of the

pattern subject given as expr . At most one sequence of declarations will be instantiated
for every instantiation of the case clause (if an else clause is speci�ed, then exactly one
sequence).

A for clause instantiates every sequence of declarations with every set of bindings
that enables a guarding pattern to match the pattern subject.

A.8.5 For-In Clause

A for-in clause has the form

clause ::= : : : /
for name in expr(A.6) begin

declaration*

end;
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The declarations in this clause are instantiated for every element in the collection expr

(whose type must satisfy the signature READ_ONLY_COLLECTION[elem-type]). The instanti-
ation is monotonic in types satisfying the signature UNION_LATTICE[elem-type].

A.9 Signature Conformance

Signature conformance is de�ned for a sequence of type actuals and corresponding
type formals. Uses of the type formals in the signatures of the type formals are replaced
by their corresponding type actuals. Then the computed signatures of the type actuals are
compared to the signatures of the corresponding type formals. All parent signatures for
classes (and modules) are recursively added to the respective lists. Then for every class
instantiation of a type formal, the corresponding type actual must have the same class
instantiated in its signatures with at least the capabilities required by the type formal.
Furthermore for every �xed signature of the type formal, the type actual must be equal to
one of the types speci�ed, or must itself satisfy a �xed signature, all of whose types must
be equal to a type in the �xed signature of the type formal.

A.10 Signature Matching

When a module declaration speci�es parent signatures and some of these signatures
are not satis�ed by the extension type, the body of the module must match such signatures.
This section de�nes when a module body matches a signature.

A module can never match a �xed signature, only class instantiations. Further-
more, for each parent signature of the class that is not satis�ed by the type extensions, the
module body must match this signature as well.

In order to match a class instantiation, the module body must declare a public
entity for each service required by the class that is available for the capabilities given. For
instance, if a class contains a public attribute declaration not declared input, then a module
satisfying an instantiation of the class need only de�ne a corresponding entity if the var
capability is present in the instantiation. The corresponding entity must have the same
name and namespace.

Next, entities in the value and pattern namespaces must have the same type as
the entities in the class they are matching, and type declarations in the module must have
at least the signatures of the types in the class. Furthermore, unless a type in the class is
a private or new type, the type in the module must be equal to it. Type checking of values
and patterns is done assuming the corresponding type declarations are equal to the types
they match. A class with entities in the signature namespace cannot be matched by any
(other) module.

Constant entities can only be matched by other constant entities. Input attributes
or variables in a class can only be matched in a module claiming to satisfy the signature
with input capability, if the corresponding declaration (respectively an attribute or variable
declaration) in the module is similarly declared input.

Finally, the declarations in the class need to be realized in a compatible way. A
function declaration can be matched by another function, a constructor for a new type
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(not a phylum), an attribute or a variable declaration. The same is true for attribute
declarations (although an input attribute in a class instantiated with input capability can
only be matched by another attribute declaration, as explained in the preceding paragraph).
A procedure declaration can be matched by any value declaration (of the correct type, of
course). A pattern declaration can be matched by a pattern or constructor declaration. A
constructor declaration can only be matched by another constructor declaration. A variable
declaration can only be matched by another variable declaration.

A.11 Prede�ned Entities

The following �le of prede�ned entities is made visible to every APS program

--- basic definitions

--- to be included in every APS program

class NULL[];

class BASIC[] :: NULL[] begin

function equal(_,_ : Result) : Boolean;

end;

-- The function's = and /= are defined polymorphically using equal

[T :: BASIC[]] begin

(=) = T$equal;

function (/=)(x,y : T) : Boolean := not T$equal(x,y);

end;

class PRINTABLE[] begin

function string(_ : Result) : String;

end;

class COMPARABLE[] :: BASIC[] begin

function less(_,_ : Result) : Boolean;

function less_equal(_,_ : Result) : Boolean;

end;

[T :: COMPARABLE[]] begin

(<) = T$less;

(<=) = T$less_equal;

function (>)(x,y : T) : Boolean := T$less(y,x);

function (>=)(x,y : T) : Boolean := T$less_equal(y,x);

end;

-- for two elements of an ordered type,
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-- they are equal or one is less than the other.

-- Integers are ORDERED, sets are not.

class ORDERED[] :: COMPARABLE[];

class NUMERIC[] :: BASIC[] begin

zero : Result;

one : Result;

function plus(_,_ : Result) : Result;

function minus(_,_ : Result) : Result;

function times(_,_ : Result) : Result;

function divide(_,_ : Result) : Result;

-- unary operators:

function unary_plus(_ : Result) : Result;

function unary_minus(_ : Result) : Result;

function unary_times(_ : Result) : Result;

function unary_divide(_ : Result) : Result;

end;

-- define infix operations polymorphically:

[T :: NUMERIC[]] begin

(+) = T$plus;

(-) = T$minus;

(*) = T$times;

(/) = T$divide;

(#+) = T$unary_plus;

(#-) = T$unary_minus;

(#*) = T$unary_times;

(#/) = T$unary_divide;

end;

[T :: NUMERIC[],ORDERED[]] function abs(x : T) : T begin

if x < T$zero then

result := -x;

else

result := x;

endif;

end;

--- Normal objects

private module NULL_TYPE[] :: NULL[];

-- this module must be ready to be instantiated when this file is loaded.
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module TYPE[] :: BASIC[], PRINTABLE[] extends NULL_TYPE[] begin

function assert(_ : Result);

function equal(x,y : Result) : Boolean := node_equivalent(x,y);

function node_equivalent(x,y : Result) : Boolean;

function string(_ : Result) : String;

end;

private type SampleType := TYPE[];

--- Concrete Types

-- Boolean is a very special predefined type

private module BOOLEAN[] :: BASIC[],PRINTABLE[] begin

function assert(_:Result);

function equal(x,y : Result) : Boolean;

function string(x : Result) : String;

end;

type Boolean :: BASIC[],PRINTABLE[] := BOOLEAN[];

true : Boolean;

false : Boolean;

function (and)(_,_ : Boolean) : Boolean;

function (or)(_,_ : Boolean) : Boolean;

function (not)(_ : Boolean) : Boolean;

private module INTEGER[] :: NUMERIC[],ORDERED[],PRINTABLE[] begin

function assert(_:Result);

zero : Result;

one : Result;

function equal(x,y : Result) : Boolean;

function less(x,y : Result) : Boolean;

function less_equal(x,y : Result) : Boolean;

function plus(x,y : Result) : Result;

function minus(x,y : Result) : Result;

function times(x,y : Result) : Result;

function divide(x,y : Result) : Result;

function unary_plus(x : Result) : Result := x;

function unary_minus(x : Result) : Result;

function unary_times(x : Result) : Result := x;

function unary_divide(x : Result) : Result;
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function string(x : Result) : String;

end;

type Integer :: NUMERIC[],ORDERED[],PRINTABLE[] := INTEGER[];

-- some useful functions:

function lognot(x : Integer) : Integer;

function logior(x,y : Integer) : Integer;

function logand(x,y : Integer) : Integer;

function logandc2(x,y : Integer) : Integer;

function logxor(x,y : Integer) : Integer;

function logbitp(index,set : Integer) : Integer;

function ash(n,count : Integer) : Integer;

function odd(_ : Integer) : Boolean;

[T :: NUMERIC[]] function (^)(x : T; y : Integer) : T begin

if y = 0 then

result := T$one;

elsif y = 1 then

result := x;

elsif odd(y) then

result := x * (x ^ (y - 1));

else

result := (x*x)^(y/2);

endif;

end;

class REAL[] :: NUMERIC[],ORDERED[] begin

function from_integer(_ : Integer) : Result;

function to_integer(_ : Result) : Integer;

end;

private module IEEE[] :: REAL[],PRINTABLE[] begin

function assert(_:Result);

zero : Result;

one : Result;

max : Result; -- maximum positive value

min : Result; -- minimum positive value

function equal(x,y : Result) : Boolean;

function less(x,y : Result) : Boolean;

function less_equal(x,y : Result) : Boolean;

function plus(x,y : Result) : Result;

function minus(x,y : Result) : Result;
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function times(x,y : Result) : Result;

function divide(x,y : Result) : Result;

function unary_plus(x : Result) : Result := x;

function unary_minus(x : Result) : Result;

function unary_times(x : Result) : Result := x;

function unary_divide(x : Result) : Result;

function from_integer(y : Integer) : Result;

function to_integer(x : Result) : Integer;

function string(x : Result) : String;

end;

type IEEEdouble := IEEE[];

type IEEEsingle := IEEE[];

function IEEEwiden(x : IEEEsingle) : IEEEdouble;

function IEEEnarrow(x : IEEEdouble) : IEEEsingle;

type Real = IEEEdouble; -- a pseudonym

private module CHARACTER[] :: ORDERED[],PRINTABLE[] begin

function assert(_ : Result);

function equal(x,y : Result) : Boolean;

function less(x,y : Result) : Boolean;

function less_equal(x,y : Result) : Boolean;

function string(x : Result) : String;

end;

type Character :: ORDERED[],PRINTABLE[] := CHARACTER[];

function char_code(x : Character) : Integer;

function int_char(x : Integer) : Character;

tab : Character := int_char(9);

newline : Character := int_char(10);

--- Phylum objects

private module NULL_PHYLUM[] :: NULL[] phylum;

module PHYLUM[] :: BASIC[], PRINTABLE[] phylum extends NULL_PHYLUM[] begin

-- the version for TYPE is superseded

function assert(_ : Result);

--- primitive functions for comparing objects

--- (object identity is used.)

function identical(_,_ : Result) : Boolean;
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equal = identical;

function string(_:Result) : String;

-- every object has an identity as an integer

function object_id(_:Result) : Integer;

function object_id_less(_,_:Result) : Boolean;

-- comparisons are possible between nodes of different phyla:

[phylum Other] begin

-- in order to handle <<, we need to implicitly define an attribute

-- threaded through everything. Therefore they are "var function"s

var function precedes(x : Result; y : Other) : Boolean;

var function precedes_equal(x : Result; y : Other) : Boolean;

pragma dynamic(precedes,precedes_equal);

-- the general parent pattern:

pattern parent(y : Other) : Result;

-- matches the result or any descendant

pattern ancestor(y : Other) : Result;

-- this function is true if x is an ancestor of y but not equal

function ancestor(x : Result; y : Other) : Boolean;

-- this function is true if x is an ancestor of y

function ancestor_equal(x : Result; y : Other) : Boolean;

end;

nil : remote Result;

end;

[T :: PHYLUM[]] begin

-- the contents of PHYLUM are hand exported:

(==) = T$identical;

(##) = T$object_id;

(<#) = T$object_id_less;

[phylum Other] begin

pattern parent = T$parent : function(_:Other) : T;

pattern ancestor = T$ancestor : function(_:Other) : T;

(^^) = (T$ancestor : function (_:T;_:Other) : Boolean);

(^^=) = (T$ancestor_equal : function (_:T;_:Other) : Boolean);

end;

nil = T$nil;

-- some variants are defined:

function (/==)(x,y : T) : Boolean := not T$identical(x,y);

end;
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[T,U :: var PHYLUM[]] begin

function (<<)(x : T; y : U) : Boolean := T$precedes(x,y);

function (<<=)(x : T; y : U) : Boolean := T$precedes_equal(x,y);

function (>>)(x : T; y : U) : Boolean := U$precedes(y,x);

function (>>=)(x : T; y : U) : Boolean := U$precedes_equal(y,x);

end;

private phylum SamplePhylum := PHYLUM[];

--- COMBINABLE, COMPLETE_PARTIAL_ORDER, and LATTICE

--- used for collection, circular and

--- circular collection attributes respectively.

class COMBINABLE[] begin

initial : Result;

function combine(_,_ : Result) : Result;

end;

class COMPLETE_PARTIAL_ORDER[] :: BASIC[] begin

bottom : Result;

function compare(_,_ : Result) : Boolean;

function compare_equal(_,_ : Result) : Boolean;

end;

-- Sometimes the ordering relations coincides with

-- the natural <, <= relations, but sometimes, it goes

-- in the reverse order, so we use a different name and

-- different symbols.

[T :: COMPLETE_PARTIAL_ORDER[]] begin

(|<|) = T$compare;

(|<=|) = T$compare_equal;

function (|>|)(x,y : T) : Boolean := T$compare(y,x);

function (|>=|)(x,y : T) : Boolean := T$compare_equal(y,x);

end;

class LATTICE[] :: COMPLETE_PARTIAL_ORDER[] begin

function join(_,_ : Result) : Result;

function meet(_,_ : Result) : Result; -- not strictly necessary

end;

[T :: LATTICE[]] begin
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(|\/|) = T$join;

(|/\|) = T$meet;

end;

module MAKE_LATTICE[T :: BASIC[]](default : T;

comparef,compare_equalf

: function(_,_:T) : Boolean;

joinf,meetf : function (_,_:T) : T)

:: COMBINABLE[], LATTICE[] Lattice extends T

begin

-- Lattices are also convenient as types for collection attributes:

initial = default;

combine = joinf;

bottom = default;

compare = comparef;

compare_equal = compare_equalf;

join = joinf;

meet = meetf;

end;

private function cand(x,y : Boolean) : Boolean := (not x and y);

private function implies(x,y : Boolean) : Boolean := (not x or y);

private function andc(x,y : Boolean) : Boolean := (x and not y);

private function revimplies(x,y : Boolean) : Boolean := (x or not y);

type OrLattice := MAKE_LATTICE[Boolean](false,cand,implies,(or),(and));

type AndLattice := MAKE_LATTICE[Boolean](true,andc,revimplies,(and),(or));

[T :: ORDERED[]] begin

function max(x,y : T) : T begin

if x > y then

result := x;

else

result := y;

endif;

end;

function min(x,y : T) : T begin

if x < y then

result := x;

else

result := y;

endif;

end;
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end;

module MAX_LATTICE[T :: ORDERED[]](min_element : T)

MaxLattice := MAKE_LATTICE[T](min_element,(<),(<=),max,min);

module MIN_LATTICE[T :: ORDERED[]](max_element : T)

MinLattice := MAKE_LATTICE[T](max_element,(>),(>=),min,max);

--- various types of collections:

class READ_ONLY_COLLECTION[ElemType] begin

procedure {.}(_ : ElemType...) : Result;

pattern {.}(_ : ElemType...) : Result;

pattern append(_,_ : Result) : Result;

pattern single(_ : ElemType) : Result;

pattern none() : Result;

function member(x : ElemType; l : Result) : Boolean;

end;

class COLLECTION[ElemType] :: READ_ONLY_COLLECTION[ElemType] begin

function append(l1,l2 : Result) : Result;

function single(x : ElemType) : Result;

function none() : Result;

-- eventually the following declaration will go:

function {.}(_ : ElemType...) : Result;

end;

[ElemType; T :: READ_ONLY_COLLECTION[ElemType]] begin

pattern {.} = T${.};

member = T$member;

-- alternate formulation as an infix operator:

(in) = T$member;

end;

[ElemType; T :: COLLECTION[ElemType]] begin

{.} = T${.};

end;

class READ_ONLY_ORDERED_COLLECTION[ElemType]

:: READ_ONLY_COLLECTION[ElemType]

begin

function nth(_ : Integer; _ : Result) : ElemType; -- starting at zero

function nth_from_end(_ : Integer; _ : Result) : ElemType;

function position(_ : ElemType; _ : Result) : Integer;
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function position_from_end(_ : ElemType; _ : Result) : Integer;

end;

class ORDERED_COLLECTION[ElemType]

:: READ_ONLY_ORDERED_COLLECTION[ElemType], COLLECTION[ElemType]

begin

function subseq(_ : Result; _,_ : Integer) : Result;

function subseq_from_end(_ : Result; _,_ : Integer) : Result;

function butsubseq(_ : Result; _,_ : Integer) : Result;

function butsubseq_from_end(_ : Result; _,_ : Integer) : Result;

end;

[E;T :: READ_ONLY_ORDERED_COLLECTION[E]] begin

nth = T$nth;

nth_from_end = T$nth_from_end;

position = T$position;

position_from_end = T$position_from_end;

function first(x : T) : E := T$nth(0,x);

function last(x : T) : E := T$nth_from_end(0,x);

end;

[E;T :: ORDERED_COLLECTION[E]] begin

subseq = T$subseq;

subseq_from_end = T$subseq_from_end;

butsubseq = T$butsubseq;

butsubseq_from_end = T$butsubseq_from_end;

function firstn(n : Integer; x : T) : T := T$subseq(x,0,n);

function lastn(n : Integer; x : T) : T := T$subseq_from_end(x,0,n);

function butfirst(x : T) : T := T$butsubseq(x,0,1);

function butlast(x : T) : T := T$butsubseq_from_end(x,0,1);

function butfirstn(n : Integer; x : T) : T := T$butsubseq(x,0,n);

function butlastn(n : Integer; x : T) : T := T$butsubseq_from_end(x,0,n);

function butnth(n : Integer; x : T) : T := T$butsubseq(x,n,n+1);

function butnth_from_end(n : Integer; x : T) : T :=

T$butsubseq_from_end(x,n,n+1);

end;

-- Sequences may be balanced.

-- They are not COMBINABLE because they are ordered.

module SEQUENCE[phylum ElemType :: input PHYLUM[], BASIC[]]

:: READ_ONLY_ORDERED_COLLECTION[ElemType], var input PHYLUM[]

phylum

begin

-- the version for PHYLUM is superseded

function assert(_ : Result);
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procedure {.}(l : ElemType...) : Result;

pragma modifies({.},type Result);

pattern {.}(l : ElemType...) : Result;

function nth(i : Integer; l : Result) : ElemType;

function nth_from_end(i : Integer; l : Result) : ElemType;

function position(x : ElemType; l : Result) : Integer;

function position_from_end(x : ElemType; l : Result) : Integer;

function member(x : ElemType; l : Result) : Boolean;

-- NB: the following are used in aps-boot-compiler:

constructor append(l1,l2 : Result) : Result;

constructor single(x : ElemType) : Result;

constructor none() : Result;

end;

-- Bags may be in any order whatsoever

module BAG[ElemType :: BASIC[]] :: COLLECTION[ElemType],COMBINABLE[] begin

-- the version for TYPE is superseded

function assert(_ : Result);

function {.}(l : ElemType...) : Result;

pattern {.}(l : ElemType...) : Result;

function member(e : ElemType; l : Result) : Boolean;

constructor append(l1,l2 : Result) : Result;

constructor single(x : ElemType) : Result;

constructor none() : Result;

initial : Result := none();

function combine(l1,l2 : Result) : Result; -- can do things.

end;

class CONCATENATING[] begin

function concatenate(_,_ : Result) : Result;

end;

[T :: CONCATENATING[]] (++) = T$concatenate;

module LIST[ElemType :: BASIC[]] :: BASIC[],CONCATENATING[],

ORDERED_COLLECTION[ElemType]

begin

-- the version for TYPE is superseded

function assert(_ : Result);

function cons(x : ElemType; l : Result) : Result;

constructor single(x : ElemType) : Result;

constructor append(l1,l2 : Result) : Result;

constructor none() : Result;

function equal(l1,l2 : Result) : Boolean;
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concatenate = append;

function member(x : ElemType; l : Result) : Boolean;

function nth(i : Integer; l : Result) : ElemType;

function nth_from_end(i : Integer; l : Result) : ElemType;

function position(x : ElemType; l : Result) : Integer;

function position_from_end(x : ElemType; l : Result) : Integer;

function subseq(l : Result; start,finish : Integer) : Result;

function subseq_from_end(l : Result; start,finish : Integer) : Result;

function butsubseq(l : Result; start,finish : Integer) : Result;

function butsubseq_from_end(l : Result; start,finish : Integer) : Result;

function {.}(l : ElemType...) : Result;

pattern {.}(l : ElemType...) : Result;

end;

class ABSTRACT_SET[ElemType]

begin

function member(x : ElemType; l : Result) : Boolean;

function union(_,_ : Result) : Result;

function intersect(_,_ : Result) : Result;

function difference(_,_ : Result) : Result;

end;

[E;T :: ABSTRACT_SET[E]] begin

(\/) = T$union;

(/\) = T$intersect;

(/\~) = T$difference;

end;

[E;T :: ABSTRACT_SET[E],COLLECTION[E]] begin

function (\)(x : T; elem : E) : T := T$difference(x,{elem});

end;

module SET[ElemType :: BASIC[]](test : function(x,y : ElemType) : Boolean)

:: BASIC[], COMPARABLE[], COLLECTION[ElemType], ABSTRACT_SET[ElemType],

COMBINABLE[]

:= private BAG[ElemType]

begin

function equal(_,_ : Result) : Boolean;

function less(_,_ : Result) : Boolean;

function less_equal(_,_ : Result) : Boolean;

function {.}(_ : ElemType...) : Result;

pattern {.}(_ : ElemType...) : Result;
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function member(x : ElemType; l : Result) : Boolean;

function union(_,_ : Result) : Result;

function intersect(_,_ : Result) : Result;

function difference(_,_ : Result) : Result;

-- for collection attributes (use a different method than BAG)

function combine(x,y : Result) : Result := union(x,y);

end;

module MULTISET[ElemType :: BASIC[]]

(test : function(x,y : ElemType) : Boolean)

:: BASIC[], COMPARABLE[], COLLECTION[ElemType], ABSTRACT_SET[ElemType],

COMBINABLE[]

-- NB: MULTISETs are not useful for circular attributes

:= private BAG[ElemType]

begin

function equal(_,_ : Result) : Boolean;

function less(_,_ : Result) : Boolean;

function less_equal(_,_ : Result) : Boolean;

function {.}(_ : ElemType...) : Result;

pattern {.}(_ : ElemType...) : Result;

function member(x : ElemType; l : Result) : Boolean;

function count(x : ElemType; l : Result) : Integer;

function union(_,_ : Result) : Result;

function intersect(_,_ : Result) : Result;

function difference(_,_ : Result) : Result;

-- for collection attributes (use a different method than BAG)

function combine(x,y : Result) : Result := union(x,y);

end;

module ORDERED_SET[ElemType :: BASIC[]]

(test : function(x,y : ElemType) : Boolean;

compare : function(x,y : ElemType) : Boolean)

:: ORDERED_COLLECTION[ElemType] -- and SET[ElemType] too

:= private SET[ElemType](test)

begin

-- equality can be checked cheaper than for SET

function equal(_,_ : Result) : Boolean;

function less(_,_ : Result) : Boolean;

function less_equal(_,_ : Result) : Boolean;
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-- combined differently than for unordered SET's

function {.}(_ : ElemType...) : Result;

-- member can be inherited

-- new operation functions:

function union(_,_ : Result) : Result;

function intersect(_,_ : Result) : Result;

function difference(_,_ : Result) : Result;

-- can be used for collection attributes:

function combine(x,y : Result) : Result := union(x,y);

-- ORDERED_SETs have ordering functions:

function nth(i : Integer; l : Result) : ElemType;

function nth_from_end(i : Integer; l : Result) : ElemType;

function position(x : ElemType; l : Result) : Integer;

function position_from_end(x : ElemType; l : Result) : Integer;

function subseq(l : Result; start,finish : Integer) : Result;

function subseq_from_end(l : Result; start,finish : Integer) : Result;

function butsubseq(l : Result; start,finish : Integer) : Result;

function butsubseq_from_end(l : Result; start,finish : Integer) : Result;

end;

module ORDERED_MULTISET[ElemType :: BASIC[]]

(test : function(x,y : ElemType) : Boolean;

compare : function(x,y : ElemType) : Boolean)

:: ORDERED_COLLECTION[ElemType] -- and ABSTRACT_SET[ElemType] too

:= private MULTISET[ElemType](test)

begin

-- equality can be checked cheaper than for MULTISET

function equal(_,_ : Result) : Boolean;

function less(_,_ : Result) : Boolean;

function less_equal(_,_ : Result) : Boolean;

-- combined differently than for unordered SET's

function {.}(_ : ElemType...) : Result;

-- member and count can be inherited

-- new operation functions:

function union(_,_ : Result) : Result;

function intersect(_,_ : Result) : Result;

function difference(_,_ : Result) : Result;



185

-- can be used for collection attributes:

function combine(x,y : Result) : Result := union(x,y);

-- ORDERED_MULTISETs have ordering functions:

function nth(i : Integer; l : Result) : ElemType;

function nth_from_end(i : Integer; l : Result) : ElemType;

function position(x : ElemType; l : Result) : Integer;

function position_from_end(x : ElemType; l : Result) : Integer;

function subseq(l : Result; start,finish : Integer) : Result;

function subseq_from_end(l : Result; start,finish : Integer) : Result;

function butsubseq(l : Result; start,finish : Integer) : Result;

function butsubseq_from_end(l : Result; start,finish : Integer) : Result;

end;

module UNION_LATTICE[ElemType;T :: SET[ElemType]]

UnionLattice := MAKE_LATTICE[T]({},(<),(<=),(\/),(/\));

module INTERSECTION_LATTICE[ElemType;T :: SET[ElemType]](universe : T)

IntersectionLattice := MAKE_LATTICE[T](universe,(>),(>=),(/\),(\/));

--- I may add a primitive pair constructor that

--- is structurally typed.

module PAIR[T1,T2 :: BASIC[]] begin

constructor pair(x:T1;y:T2) : Result;

function fst(p : Result) : T1 begin

case p begin

match pair(?x,?) begin

result := x;

end;

end;

end;

function snd(p : Result) : T2 begin

case p begin

match pair(?,?y) begin

result := y;

end;

end;

end;

end;

module STRING[] :: ORDERED[], PRINTABLE[] := LIST[Character] begin

function less(x,y : Result) : Boolean;

function less_equal(x,y : Result) : Boolean;

function string(x : Result) : String;

end;
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type String := STRING[];

[T,U :: PRINTABLE[]] function (||)(x : T; y : U) : String

:= T$string(x) ++ U$string(y);

type Range := LIST[Integer];

function (..)(x,y : Integer) : Range begin

if x = y then

result := {x};

elsif x > y then

result := {};

else

mid : Integer := (x+y)/2;

result := (x..mid) ++ ((mid+1)..y);

endif;

end;

[ElemType; T :: READ_ONLY_COLLECTION[ElemType]] begin

function length(l : T) : Integer := 0+(1 for _ in l);

end;
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Appendix B

A Compiler for Oberon2

This section consists of an Oberon2 compiler written in APS. It translates Oberon2
(in concrete syntax tree form) into a formalized version of the GCC tree intermediate
representation.

B.1 Abstract Syntax

module OBERON2_TREE[] begin

phylum Program;

phylum Block;

phylum Declaration;

phylum Header;

phylum Receiver;

phylum Type;

phylum Statement;

phylum Case;

phylum CaseLabel;

phylum Expression;

phylum Operator;

phylum Element;

phylum IdentDef;

phylum ExportInfo;

phylum Use;

--phylum ModuleUse;

signature PHYLA := {Program,Block,Declaration,Header,Receiver,

Type,Statement,Case,CaseLabel,Expression,Operator,

Element,IdentDef,ExportInfo,Use,ModuleUse},

var PHYLUM[];

phylum Modules:=SEQUENCE[Declaration];

phylum Declarations:=SEQUENCE[Declaration];

phylum Formals:=SEQUENCE[Declaration];

phylum Fields:=SEQUENCE[Declaration];
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phylum Statements:=SEQUENCE[Statement];

phylum Cases:=SEQUENCE[Case];

phylum CaseLabels:=SEQUENCE[CaseLabel];

phylum Actuals:=SEQUENCE[Expression];

phylum Elements:=SEQUENCE[Element];

signature SEQ_PHYLA := {Modules,Declarations,Formals,Fields,Statements,

Cases,CaseLabels,Actuals,Elements}, var PHYLUM[];

type Constant := OBERON2_CONSTANT[];

type Constants = Constant$Constants;

constructor program(modules : Modules) : Program;

constructor module_decl(name : IdentDef; body : Block) : Declaration;

constructor block(decls : Declarations; stmts : Statements) : Block;

constructor no_block() : Block;

constructor import(name : IdentDef; from : Use) : Declaration;

constructor const_decl(name : IdentDef; value : Expression) : Declaration;

constructor type_decl(name : IdentDef; value : Type) : Declaration;

constructor var_decl(name : IdentDef; shape : Type) : Declaration;

constructor forward(header : Header) : Declaration;

constructor proc_decl(header : Header; body : Block) : Declaration;

constructor header(name : IdentDef;

receiver : Receiver;

formals : Formals;

result : Type) : Header;

constructor receiver(formal : Declaration) : Receiver;

constructor no_receiver() : Receiver;

-- note that formals are separated and new type identifiers

-- introduced if necessary (they aren't open_array types, for example)

constructor value_formal(name : IdentDef; shape : Type) : Declaration;

constructor var_formal(name : IdentDef; shape : Type) : Declaration;

pattern formal(name : IdentDef; shape : Type) : Declaration

:= value_formal(?name,?shape),var_formal(?name,?shape);

-- for the builtin procedures with optional parameters

constructor opt_formal(shape : Type; default : Constant)

: Declaration;

-- optional parameters of unlimited number and type

-- check in different ways

constructor rest_formal(shape : Type) : Declaration;

constructor field(name : IdentDef; shape : Type) : Declaration;

constructor no_decl() : Declaration;
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pattern declaration(name : IdentDef) : Declaration :=

module_decl(?name,?),import(?name,?),

const_decl(?name,?),type_decl(?name,?),var_decl(?name,?),

forward(header(?name,?,?,?)),proc_decl(header(?name,?,?,?),?),

formal(?name,?),field(?name,?);

-- a shorthand for getting at the receiver formal:

pattern bound_proc_decl(name : IdentDef; formal : Declaration) : Declaration

:= proc_decl(header:=header(name:=?name,

receiver:=receiver(formal:=?formal))),

forward(header:=header(name:=?name,

receiver:=receiver(formal:=?formal)));

constructor no_type() : Type;

constructor named_type(using : Use) : Type;

constructor fixed_array_type(length : Expression; element_type : Type)

: Type;

constructor open_array_type(element_type : Type) : Type;

constructor record_type(extending : Type; fields : Fields) : Type;

constructor pointer_type(to : Type) : Type;

constructor proc_type(header : Header) : Type;

-- basic types

constructor boolean_type() : Type;

constructor char_type() : Type;

constructor shortint_type() : Type;

constructor integer_type() : Type;

constructor longint_type() : Type;

constructor real_type() : Type;

constructor longreal_type() : Type;

pattern array_type(element_type : Type) : Type

:= open_array_type(?element_type),fixed_array_type(?,?element_type);

pattern basic_type() : Type

:= boolean_type(),char_type(),shortint_type(),integer_type(),

longint_type(),real_type(),longreal_type();

pattern numeric_type() : Type

:= shortint_type(),integer_type(),longint_type(),

real_type(),longreal_type();

constructor set_type() : Type;

constructor nil_type() : Type; -- the type of NIL

-- pseduo-types used for builtin procedures and functions:

constructor abs_type() : Type;

constructor long_type() : Type;

constructor max_type() : Type;

constructor short_type() : Type;

constructor type_type() : Type;
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constructor any_type() : Type;

pattern pseudo_type() : Type

:= abs_type(),long_type(),max_type(),short_type(),type_type(),any_type();

-- default type for things computing types.

any : Type := any_type();

boolean : Type := boolean_type();

char : Type := char_type();

shortint : Type := shortint_type();

integer : Type := integer_type();

longint : Type := longint_type();

real : Type := real_type();

longreal : Type := longreal_type();

string : Type := open_array_type(char);

set : Type := set_type();

a_type : Type := type_type();

constructor assign_stmt(lhs : Expression; rhs : Expression) : Statement;

constructor call_stmt(call : Expression) : Statement;

constructor if_stmt(guard : Expression;

(then) : Statements;

(else) : Statements) : Statement;

constructor case_stmt(expr : Expression;

cases : Cases;

(else) : Statements) : Statement;

constructor while_stmt(guard : Expression;

body : Statements) : Statement;

constructor repeat_stmt(body : Statements; guard : Expression) : Statement;

constructor for_stmt(variable : Expression; -- just an ident

start, finish, step : Expression;

body : Statements) : Statement;

constructor loop_stmt(body : Statements) : Statement;

constructor with_stmt(variable : Expression; -- just a qualident

guard_type : Type;

body : Statements;

(else) : Statements) : Statement;

constructor exit_stmt() : Statement;

constructor return_stmt(value : Expression) : Statement;

constructor case_clause(labels : CaseLabels; body : Statements) : Case;

constructor single_label(value : Expression) : CaseLabel;

constructor range_label(start,finish : Expression) : CaseLabel;

constructor no_expr() : Expression;

constructor named_expr(using : Use) : Expression;

constructor unop(op : Operator; arg : Expression) : Expression;

constructor binop(op : Operator; arg1, arg2 : Expression) : Expression;

constructor funcall(func : Expression; actuals : Actuals) : Expression;
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constructor is_test(value : Expression; test_type : Type) : Expression;

-- this node doesn't appear until after type checking, because

-- it is syntactically undistinguishable from a procedure call

constructor type_guard(value : Expression; guard_type : Type) : Expression;

-- multiple dimension array sugar removed before this point:

constructor aref(array : Expression; index : Expression) : Expression;

constructor fref(record : Expression; field : Use; super : Boolean)

: Expression;

constructor fetch(pointer : Expression) : Expression;

constructor set_expr(elements : Elements) : Expression;

constructor constant_expression(value : Constant) : Expression;

constructor log_or() : Operator;

constructor log_and() : Operator;

constructor log_not() : Operator;

constructor plus() : Operator;

constructor minus() : Operator;

constructor times() : Operator;

constructor divide() : Operator;

constructor mod() : Operator;

constructor div() : Operator;

constructor equal() : Operator;

constructor not_equal() : Operator;

constructor less() : Operator;

constructor less_equal() : Operator;

constructor greater() : Operator;

constructor greater_equal() : Operator;

constructor in_set() : Operator;

-- type test parses as its own type of expression.

pattern logical_operator() : Operator := log_or(),log_and(),log_not();

pattern integer_operator() : Operator := mod(),div();

pattern arithmetic_operator() : Operator :=

plus(),minus(),times(),divide(),integer_operator();

pattern equality_operator() : Operator := equal(),not_equal();

pattern comparison_operator() : Operator :=

equality_operator(),less(),less_equal(),greater(),greater_equal();

-- predicates are things returning boolean values:

pattern predicate_operator() : Operator :=

logical_operator(), comparison_operator(), in_set();

-- NB: predicate_operator and arithmetic_operator between them

-- cover the space of operators.

constructor single_element(expr : Expression) : Element;

constructor range_element(start,finish : Expression) : Element;

constructor identifier(name : Symbol; export_info : ExportInfo) : IdentDef;

constructor ignore() : IdentDef;

constructor not_exported() : ExportInfo;
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constructor readonly_exported() : ExportInfo;

constructor exported() : ExportInfo;

constructor use_name(name : Symbol) : Use;

-- qualified nodes rarely appear in expressions at first because

-- we can't distinguish a qualified identifier from a field reference

constructor qualified(from_module : Use; using : Use) : Use;

[T :: {Expression,Use}] pattern possibly_qualified(mod, u : Use) : T

:= qualified(?mod,?u) :? T, fref(named_expr(?mod),?u,!false) :? T;

end;

B.1.1 Constants

module OBERON2_CONSTANT[] :: NUMERIC[], COMPARABLE[]

Constant

begin

constructor shortint_constant(value : Integer) : Constant;

constructor integer_constant(value : Integer) : Constant;

constructor longint_constant(value : Integer) : Constant;

constructor real_constant(value : IEEEsingle) : Constant;

constructor longreal_constant(value : IEEEdouble) : Constant;

constructor set_constant(representation : Integer) : Constant;

constructor boolean_constant(value : Boolean) : Constant;

constructor char_constant(value : Character) : Constant;

constructor string_constant(value : String) : Constant;

constructor undefined() : Constant;

nil : Constant := undefined();

-- since we're using infinite precision integers for all integer

-- constants, we might as well make it easier to use them factored!

pattern some_integer_constant(x : Integer) : Constant

:= shortint_constant(?x),integer_constant(?x),longint_constant(?x);

type Constants := LIST[Constant];

-- this has to work for sets too, but we can fake it

-- by having a special coercion function for it.

zero : Constant := shortint_constant(0);

-- one is only to satisfy NUMERIC

one : Constant := shortint_constant(1);

--- Set creation functions
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-- special functions to make it easier to use sets:

function make_set(l : Constants) : Constant begin

collection rep : Integer :> 0,logior;

collection some_nil : Boolean :> false,(or);

for x : Constant in l begin

case x begin

match undefined() begin some_nil :> true; end;

match some_integer_constant(?n) begin

-- set the appropriate bit in the result

-- we are using arbitrary precision integers

-- so there is no problem with overflow, just massive

-- space consumption

rep :> ash(1,n);

end;

end;

end;

if some_nil then

result := nil;

else

result := set_constant(rep);

endif;

end;

function make_range(x,y : Constant) : Constants begin

case Constants${x,y} begin

match {some_integer_constant(?v1),

some_integer_constant(?v2)} begin

result := {shortint_constant(i) for i : Integer in v1..v2};

end;

else

result := {nil}; -- force make_set to return nil

end;

end;

--- arithmetic functions

-- (We use the builtin names so that we can overload the builtin operators)

function plus(x,y : Constant) : Constant

:= do_op(logior,(or),IEEEdouble$plus,IEEEsingle$plus,Integer$plus,x,y);

function minus(x,y : Constant) : Constant

:= do_op(logandc2,andc2,IEEEdouble$minus,IEEEsingle$minus,Integer$minus,

x,y);

function andc2(x,y : Boolean) : Boolean := x and not y;

function times(x,y : Constant) : Constant

:= do_op(logand,(and),IEEEdouble$times,IEEEsingle$times,Integer$times,

x,y);
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function divide(x,y : Constant) : Constant

begin

case Constants${x,y} begin

match {some_integer_constant(?),some_integer_constant(?)} begin

result := divide(to_real(x),to_real(y));

end;

else

result := do_op(logxor,xor,IEEEdouble$divide,IEEEsingle$divide,

Integer$divide, -- this parameter is not used

x,y);

end;

end;

function xor(x,y : Boolean) : Boolean := (x and not y) or (not x and y);

function unary_plus(x : Constant) : Constant := x;

-- for unary -, we don't do zero-x because we want it to work for booleans

-- and sets too. (And even coercing 0 to false will get the wrong value)

function unary_minus(x : Constant) : Constant

:= do_unop(lognot,(not),IEEEdouble$unary_minus,IEEEsingle$unary_minus,

Integer$unary_minus,x);

function unary_times(x : Constant) : Constant := x;

function unary_divide(x : Constant) : Constant := divide(one,x);

function div(x,y : Constant) : Constant

begin

case y begin

match some_integer_constant(!0) begin

result := nil;

end;

else

result := do_op(logxor,xor, -- unused params

IEEEdouble$divide,IEEEsingle$divide, -- unused params

Integer$divide, -- only function used

x,y);

end;

end;

function mod(x,y : Constant) : Constant

begin

case y begin

match some_integer_constant(!0) begin

result := nil;

end;

else

result := do_op(logxor,xor,IEEEdouble$divide,IEEEsingle$divide, -- ditto

floor, -- only function used

x,y);
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end;

end;

function floor(x,y : Integer) : Integer :=

x-(x/y)*y;

function abs(v : Constant) : Constant

begin

-- this is the lazy way:

-- call the functions defined in this module:

if less(v,zero) then

result := unary_minus(v);

else

result := v;

endif;

end;

-- factor out binary operations into a single function

private function do_op(set_op : function(_,_ : Integer) : Integer;

boolean_op : function(_,_ : Boolean) : Boolean;

longreal_op : function (_,_ : IEEEdouble)

: IEEEdouble;

real_op : function (_,_ : IEEEsingle) : IEEEsingle;

int_op : function (_,_ : Integer) : Integer;

x,y : Constant) : Constant

begin

case do_coerce(x,y) begin

match {set_constant(?rep1),

set_constant(?rep2)} begin

result := set_constant(set_op(rep1,rep2));

end;

match {boolean_constant(?b1),

boolean_constant(?b2)} begin

result := boolean_constant(boolean_op(b1,b2));

end;

match {longreal_constant(?v1),

longreal_constant(?v2)} begin

result := longreal_constant(longreal_op(v1,v2));

end;

match {real_constant(?v1),

real_constant(?v2)} begin

result := real_constant(real_op(v1,v2));

end;

match {longint_constant(?v1),

longint_constant(?v2)} begin

result := longint_constant(int_op(v1,v2));

end;

match {integer_constant(?v1),

integer_constant(?v2)} begin

result := integer_constant(int_op(v1,v2));
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end;

match {shortint_constant(?v1),

shortint_constant(?v2)} begin

result := shortint_constant(int_op(v1,v2));

end;

else

result := nil;

end;

end;

private function do_unop(set_op : function(_ : Integer) : Integer;

boolean_op : function(_ : Boolean) : Boolean;

longreal_op : function (_:IEEEdouble) : IEEEdouble;

real_op : function (_ : IEEEsingle) : IEEEsingle;

int_op : function (_ : Integer) : Integer;

x : Constant) : Constant

begin

case x begin

match set_constant(?rep) begin

result := set_constant(set_op(rep));

end;

match boolean_constant(?b) begin

result := boolean_constant(boolean_op(b));

end;

match longreal_constant(?v) begin

result := longreal_constant(longreal_op(v));

end;

match real_constant(?v) begin

result := real_constant(real_op(v));

end;

match longint_constant(?v) begin

result := longint_constant(int_op(v));

end;

match integer_constant(?v) begin

result := integer_constant(int_op(v));

end;

match shortint_constant(?v) begin

result := shortint_constant(int_op(v));

end;

else

result := nil;

end;

end;

-- comparison functions

function equal(x,y : Constant) : Boolean

:= do_compare(Integer$equal,String$equal,Boolean$equal,

IEEEdouble$equal,IEEEsingle$equal,Integer$equal,

x,y);
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-- the following operations are not legal on sets in Oberon2

-- but we still define them (for fun).

function less(x,y : Constant) : Boolean

:= do_compare(proper_subset,String$less,bool_less,

IEEEdouble$less,IEEEsingle$less,Integer$less,

x,y);

function proper_subset(x,y : Integer) : Boolean

:= x/=y and subset(x,y);

function bool_less(x,y : Boolean) : Boolean

:= not x and y;

function less_equal(x,y : Constant) : Boolean

:= do_compare(subset,String$less_equal,bool_less_eq,

IEEEdouble$less_equal,IEEEsingle$less_equal,

Integer$less_equal,

x,y);

function subset(x,y : Integer) : Boolean

:= logandc2(x,y) = 0;

function bool_less_eq(x,y : Boolean) : Boolean

:= not x or y;

private function do_compare(set_op : function(x,y : Integer) : Boolean;

string_op : function(x,y : String) : Boolean;

bool_op : function(x,y : Boolean) : Boolean;

longreal_op : function (x,y : IEEEdouble)

: Boolean;

real_op : function (x,y : IEEEsingle) : Boolean;

int_op : function (x,y : Integer) : Boolean;

x,y : Constant) : Boolean

begin

case do_coerce(x,y) begin

match {set_constant(?rep1),

set_constant(?rep2)} begin

result := set_op(rep1,rep2);

end;

match {string_constant(?s1),string_constant(?s2)} begin

result := string_op(s1,s2);

end;

match {char_constant(?c1),char_constant(?c2)} begin

result := string_op({c1},{c2});

end;

match {boolean_constant(?b1),

boolean_constant(?b2)} begin

result := bool_op(b1,b2);

end;

match {longreal_constant(?v1),

longreal_constant(?v2)} begin

--! NaN problems:

result := longreal_op(v1,v2);
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end;

match {real_constant(?v1),

real_constant(?v2)} begin

--! NaN problems:

result := real_op(v1,v2);

end;

match {some_integer_constant(?v1),

some_integer_constant(?v2)} begin

result := int_op(v1,v2);

end;

else

-- badly typed or not constant

-- just return false for want of a better value

result := false;

end;

end;

-- a shared coercion routine for use by do_compare and do_op:

-- it makes sure that both operands are of the same type by coercing

-- one up to the other.

private function do_coerce(x,y : Constant) : Constants begin

case Constants${x,y} begin

match {...,undefined(),...} begin

result := {};

end;

match {...,set_constant(?),...} begin

result := {to_set(x),to_set(y)};

end;

match {...,string_constant(?),...} begin

result := {to_string(x),to_string(y)};

end;

match {...,char_constant(?),...} begin

result := {to_char(x),to_char(y)};

end;

match {...,boolean_constant(?),...} begin

result := {to_boolean(x),to_boolean(y)};

end;

match {...,longreal_constant(?),...} begin

result := {to_longreal(x),to_longreal(y)};

end;

match {...,real_constant(?),...} begin

result := {to_real(x),to_real(y)};

end;

match {...,longint_constant(?),...} begin

result := {to_longint(x),to_longint(y)};

end;

match {...,integer_constant(?),...} begin

result := {to_integer(x),to_integer(x)};

end;

match {...,shortint_constant(?),...} begin
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result := {to_shortint(x),to_shortint(y)};

end;

else

result := {};

end;

end;

--- Coercion routines

-- These routines do coercion between the various numeric

-- types that are part of this package. The operators

-- only request upward coercions but downward coercions are also useful.

function to_set(x : Constant) : Constant begin

case x begin

match set_constant(?) begin

result := x;

end;

-- hack: also match zero:

match !zero begin

result := set_constant(0);

end;

else

result := nil;

end;

end;

function to_string(x : Constant) : Constant begin

case x begin

match string_constant(?) begin

result := x;

end;

match char_constant(?c) begin

result := string_constant({c});

end;

else

result := nil;

end;

end;

function to_char(x : Constant) : Constant begin

case x begin

match string_constant({?c}) begin

result := char_constant(c);

end;

match char_constant(?) begin

result := x;

end;

else

result := nil;
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end;

end;

function to_boolean(x : Constant) : Constant begin

case x begin

match boolean_constant(?) begin

result := x;

end;

else

result := nil;

end;

end;

function to_longreal(x : Constant) : Constant begin

case x begin

match longreal_constant(?) begin

result := x;

end;

match real_constant(?v) begin

result := longreal_constant(IEEEwiden(v));

end;

match some_integer_constant(?v) begin

result :=

longreal_constant(IEEEdouble$from_integer(v));

end;

else

result := nil;

end;

end;

function to_real(x : Constant) : Constant begin

case x begin

match longreal_constant(?v) begin

result := real_constant(IEEEnarrow(v));

end;

match real_constant(?) begin

result := x;

end;

match some_integer_constant(?v) begin

result :=

real_constant(IEEEsingle$from_integer(v));

end;

else

result := nil;

end;

end;

function to_longint(x : Constant) : Constant begin

case x begin

match longreal_constant(?v) begin
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result := longint_constant(IEEEdouble$to_integer(v));

end;

match real_constant(?v) begin

result := longint_constant(IEEEsingle$to_integer(v));

end;

match longint_constant(?) begin

result := x;

end;

match some_integer_constant(?v) begin

result := longint_constant(v);

end;

else

result := nil;

end;

end;

function to_integer(x : Constant) : Constant begin

case x begin

match longreal_constant(?v) begin

result := integer_constant(IEEEdouble$to_integer(v));

end;

match real_constant(?v) begin

result := integer_constant(IEEEsingle$to_integer(v));

end;

match integer_constant(?) begin

result := x;

end;

match some_integer_constant(?v) begin

result := integer_constant(v);

end;

else

result := nil;

end;

end;

function to_shortint(x : Constant) : Constant begin

case x begin

match longreal_constant(?v) begin

result := shortint_constant(IEEEdouble$to_integer(v));

end;

match real_constant(?v) begin

result := shortint_constant(IEEEsingle$to_integer(v));

end;

match shortint_constant(?) begin

result := x;

end;

match some_integer_constant(?v) begin

result := shortint_constant(v);

end;

else
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result := nil;

end;

end;

-- for turning into an integer for case statements and for ORD

function ord(x : Constant) : Integer begin

case x begin

match some_integer_constant(?v) begin

result := v;

end;

match char_constant(?ch) begin

result := char_code(ch);

end;

match string_constant({?ch}) begin

result := char_code(ch);

end;

match boolean_constant(?b) begin

if b then

result := 1;

else

result := 0;

endif;

end;

end;

end;

end;

B.2 Prede�ned Procedures

module OBERON2_ADD_PREDEFINED[T :: input OBERON2_TREE[]] extends T begin

-- we only add nodes to the tree. We do not export anything.

private;

-- we create extra declarations that will be in the root_contour

-- for that purpose, we have several procedures:

procedure make_global_const(name : String; value : Expression)

: Declaration

:= const_decl(identifier(make_symbol(name),exported()),value);

procedure make_global_type(name : String; base : Type) : Declaration

:= type_decl(identifier(make_symbol(name),exported()),base);

procedure make_global_proc(name : String; formals : Formals; rt : Type)

: Declaration

:= forward(header(identifier(make_symbol(name),exported()),

no_receiver(),formals,rt));

procedure make_value_formal(of_type : Type) : Formals

:= Formals${value_formal(ignore(),of_type)};

procedure make_value_formals(t1,t2 : Type) : Formals

:= Formals${value_formal(ignore(),t1),value_formal(ignore(),t2)};
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procedure make_named_type(name : String) : Type

:= named_type(use_name(make_symbol(name)));

predefined_decls : Declarations :=

Declarations$

{-- Section 6.1:

make_global_type("*ANY*",any),

make_global_type("BOOLEAN",boolean),

make_global_type("CHAR",char),

make_global_type("SHORTINT",shortint),

make_global_type("INTEGER",integer),

make_global_type("LONGINT",longint),

make_global_type("REAL",real),

make_global_type("LONGREAL",longreal),

make_global_type("*STRING*",pointer_type(string)),

make_global_const

("TRUE",constant_expression(Constant$boolean_constant(true))),

make_global_const

("FALSE",constant_expression(Constant$boolean_constant(false))),

-- Section 6.4:

make_global_const("NIL",constant_expression(Constant$nil)),

-- Section 10.3:

-- value returning procedures:

make_global_proc("ABS",

make_value_formal(make_named_type("LONGREAL")),

abs_type()),

make_global_proc("ASH",

make_value_formals(make_named_type("LONGINT"),

make_named_type("LONGINT")),

make_named_type("LONGINT")),

make_global_proc("CAP",

make_value_formal(make_named_type("CHAR")),

make_named_type("CHAR")),

make_global_proc("CHR",

make_value_formal(make_named_type("LONGINT")),

make_named_type("CHAR")),

make_global_proc("ENTIER",

make_value_formal(make_named_type("LONGREAL")),

make_named_type("LONGINT")),

make_global_proc("LEN",

Formals${value_formal

(ignore(),

open_array_type

(make_named_type("*ANY*"))),

opt_formal(make_named_type("LONGINT"),

Constant$integer_constant(1))},

make_named_type("LONGINT")),
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make_global_proc("LONG",

make_value_formal(long_type()),

long_type()),

make_global_proc("MAX",

make_value_formal(max_type()),

max_type()),

make_global_proc("MIN",

make_value_formal(max_type()),

max_type()),

make_global_proc("ODD",

make_value_formal(make_named_type("LONGINT")),

boolean_type()),

make_global_proc("ORD",

make_value_formal(make_named_type("CHAR")),

make_named_type("INTEGER")),

make_global_proc("SHORT",

make_value_formal(short_type()),

short_type()),

make_global_proc("SIZE",

make_value_formal(type_type()),

make_named_type("LONGINT")),

-- proper procedures

make_global_proc("ASSERT",

Formals${value_formal(ignore(),boolean_type()),

opt_formal(make_named_type("LONGINT"),

Constant$integer_constant(1))},

no_type()),

make_global_proc("COPY",

Formals$

{value_formal

(ignore(),

open_array_type(make_named_type("CHAR"))),

-- not sure if this will work:

var_formal

(ignore(),

open_array_type(make_named_type("CHAR")))},

no_type()),

make_global_proc("DEC",

-- not really:

Formals$

{var_formal(ignore(),make_named_type("LONGINT")),

opt_formal(make_named_type("LONGINT"),

Constant$integer_constant(1))},

no_type()),

make_global_proc("EXCL",

Formals$

{var_formal(ignore(),set_type()),

value_formal(ignore(),

make_named_type("LONGINT"))},

no_type()),
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make_global_proc("HALT",make_value_formal(make_named_type("LONGINT")),

no_type()),

make_global_proc("INC",

-- not really:

Formals${var_formal(ignore(),

make_named_type("LONGINT")),

opt_formal(make_named_type("LONGINT"),

Constant$integer_constant(1))},

no_type()),

make_global_proc("INCL",

Formals${var_formal(ignore(),set_type()),

value_formal(ignore(),

make_named_type("LONGINT"))},

no_type()),

make_global_proc("NEW",

Formals${var_formal

(ignore(),

pointer_type(make_named_type("*ANY*"))),

rest_formal(make_named_type("LONGINT"))},

no_type())};

end;

B.3 Name Resolution

In the Oberon2 compiler, name resolution and computing the types of expressions
must be interleaved. The following module brings these parts together:

module OBERON2_RESOLVE[T :: var OBERON2_TREE[], var OBERON2_ADD_PREDEFINED[T]]

:: var OBERON2_SYMTAB[T], var OBERON2_EXPR_TYPE[T]

extends T

begin

-- these two modules need to be inherited into one so they

-- can be implemented in one pass:

inherit OBERON2_SYMTAB[T](base_type,expr_type) begin

var use_decl = use_decl;

var no_decl_reason = no_decl_reason;

var is_redeclaration = is_redeclaration;

var overrides = overrides;

type ForwardSet = ForwardSet;

var forwarding_decls = forwarding_decls;

var is_builtin = is_builtin;

end;

inherit OBERON2_EXPR_TYPE[T](use_decl) begin

var base_type = base_type;

var expr_type = expr_type;

var expr_header = expr_header;

var implicitly_guarded = implicitly_guarded;

end;

-- "A type guard v(T) ... "
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-- NB: type guards are read as function calls:

-- we define an attribute to say when a funcall is a type_guard

public attribute Expression.is_type_guard : Boolean := false;

-- We say an expression v(T) is a type guard if T is a type

-- and v isn't a procedure

match ?e=funcall(?v,{?T}) begin

case T.expr_type begin

match type_type() begin

if v.expr_header == nil then

e.is_type_guard := true;

endif;

end;

end;

end;

var pattern actual_type_guard(v : Expression; uT : Use) : Expression

:= type_guard(?v,named_type(?uT)),

?e=funcall(?v,{named_expr(?uT)}) if e.is_type_guard;

end;

B.3.1 Algol Scope

The Oberon2 compiler uses a generic Algol scope module that de�nes the basic
symbol table operations.

module ALGOL_SCOPE[phylum Decl :: var PHYLUM[]]

(decl_name : function(x : remote Decl) : Symbol)

phylum Contour

begin

constructor root_contour() : Contour;

constructor nested_contour(parent : remote Contour) : Contour;

type Decls := BAG[remote Decl];

input collection attribute Contour.local_decls : Decls;

private type SortedDecls := ORDERED_SET[remote Decl]((==),(<<));

var function find_local_decl(name : Symbol; scope : remote Contour)

: remote Decl

begin

case SortedDecls${decl if decl_name(decl) = name

for decl in scope.local_decls}

begin

match {?first,...} begin

result := first;

end;

else

result := Decl$nil;

end;

end;

pragma memo(find_local_decl);
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var function find_decl(name : Symbol; scope : remote Contour)

: remote Decl

begin

here : remote Decl := find_local_decl(name,scope);

if here /= Decl$nil then

result := here;

else

case scope begin

match nested_contour(?parent) begin

result := find_decl(name,parent);

end;

else

result := Decl$nil;

end;

endif;

end;

end;

B.3.2 The Symbol Table

-- This module is responsible for creating scopes and inserting declarations

-- into the scopes. It requires information from name resolution for types

-- so it can locate extended types and receiver types for type-bound types.

module OBERON2_SYMTAB[T :: var OBERON2_TREE[]]

(base_type : function (_ : remote T$Type) : remote T$Type;

expr_type : function (_ : remote T$Expression) : remote T$Type) extends T

begin

-- this attribute expresses the main work of the symbol table: looking

-- things up. The next attribute is a string that gives a reason

-- (error message) for a use not being found (if use_decl is nil)

attribute Use.use_decl : remote Declaration := nil;

attribute Use.no_decl_reason : String := "";

-- extra information that requires the symbol table:

-- is_redeclaration true for a decl that incorrectly redeclares another

-- overrides in inheritance, the inherited shadowed decl

-- forwarding_decls for a forward declaration a list of redeclarations

attribute Declaration.is_redeclaration : Boolean := false;

attribute Declaration.overrides : remote Declaration := nil;

type ForwardSet := ORDERED_SET[remote Declaration]((==),(<<));

collection attribute Declaration.forwarding_decls : ForwardSet;

attribute (d:Declaration).is_builtin : Boolean := d.scope==root_scope;

private;
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--- Scope

phylum Contour := ALGOL_SCOPE[Declaration](decl_name);

root_contour = Contour$root_contour;

pattern root_contour = Contour$root_contour;

nested_contour = Contour$nested_contour;

pattern nested_contour = Contour$nested_contour;

local_decls = Contour$local_decls;

find_local_decl = Contour$find_local_decl;

find_decl = Contour$find_decl;

-- We need a distinct type for record scopes

-- because we need to insert things in record scopes aftering

-- looking things up in regular scopes, and only

-- the type system is powerful enough to prove that this doesn't

-- cause a cycle.

phylum RecordContour := ALGOL_SCOPE[Declaration](decl_name);

pattern root_record_contour = RecordContour$root_contour;

pattern nested_record_contour = RecordContour$nested_contour;

root_record_contour = RecordContour$root_contour;

nested_record_contour = RecordContour$nested_contour;

local_record_decls = RecordContour$local_decls;

find_local_record_decl = RecordContour$find_local_decl;

find_record_decl = RecordContour$find_decl;

private function decl_name(x : remote Declaration) : Symbol begin

case x begin

match declaration(identifier(?name,?)) begin

result := name;

end;

end;

end;

type Scope := remote Contour;

type RecordScope := remote RecordContour;

signature SCOPABLE := {Declaration,Block,Header,Receiver,

Statement,Expression,Use,Type,

Case,CaseLabel,Element},

var PHYLUM[];

-- The scope for inserting declarations

-- (The default will only be active for entities not in any module,

-- that is the predefined procedures)

[phylum T :: SCOPABLE] attribute T.scope : Scope := root_scope;

attribute Block.saved_scope : Scope := root_scope;

attribute Declaration.record_scope : RecordScope;
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attribute Type.saved_record_scope : RecordScope;

-- predefined things sit outside the program and can be shadowed by

-- local declarations;

root_scope : Scope := root_contour();

-- this is the scope that modules are declared in:

module_scope : Scope := root_contour();

-- this scope is used to represent a default scope with nothing declared

-- in it:

empty_scope : Scope := root_contour();

--- Establishing scope for entities

match program({...,?mod,...}) begin

mod.scope := root_scope;

end;

match ?b=block(?decls,?stmts) begin

inner : Scope := nested_contour(b.scope);

for decl in decls begin

decl.scope := inner;

end;

for stmt in stmts begin

stmt.scope := inner;

end;

b.saved_scope := inner;

end;

match ?h=header(?,?receiver,?formals,?) begin

inner : Scope := nested_contour(h.scope);

receiver.scope := inner;

for formal in formals begin

formal.scope := inner;

end;

end;

-- the block is situated in the scope declaring the receiver and formals

-- Since the body is a "block", local declarations can shadow

-- outer declarations.

match proc_decl(header(receiver:=?rec),?body) begin

body.scope := rec.scope;

end;

-- each record's fields are scoped inside the record it extends,

match ?rt=record_type(?extending,?fields) begin

field_scope : RecordScope;

case extending.base_type begin
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match ?pt=record_type(...) begin

field_scope := nested_record_contour(pt.saved_record_scope);

end;

else

field_scope := root_record_contour();

end;

rt.saved_record_scope := field_scope;

for field in fields begin

field.record_scope := field_scope;

end;

end;

-- otherwise we just copy scope to the child

[phylum P :: SCOPABLE;

phylum C :: SCOPABLE] begin

match ?parent:P=parent(?child:C) begin

child.scope := parent.scope;

end;

end;

signature SCOPABLE_SEQ := {Declarations,Formals,Fields,Statements,

Cases,CaseLabels,Actuals,Elements}, var PHYLUM[];

[phylum P :: SCOPABLE;

phylum L :: SEQUENCE[C],SCOPABLE_SEQ;

phylum C :: SCOPABLE] begin

match ?parent:P=parent(?:L={...,?child:C,...}) begin

child.scope := parent.scope;

end;

end;

--- Inserting elements in scopes and checking for redeclaration

--- and compute forwarding resolutions and find overridden declarations:

-- every declaration inserts itself in the scope

-- except that modules insert themselves into the module scope

-- and procedures with a receiver insert themselves into the record:

match ?d=declaration(identifier(?name,?)) begin

insert_record_scope : RecordScope := nil;

insert_scope : Scope := nil;

is_record_scope : Boolean := false;

case d begin

match module_decl(...) begin

insert_scope := module_scope;

end;

match bound_proc_decl(?,?rec_formal) begin

is_record_scope := true;

-- section 10.2: "The receiver may either be a variable parameter

-- of record type T or ..."

case rec_formal begin
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match var_formal(?,?rtype) begin

case rtype.base_type begin

match ?rt=record_type(...) begin

insert_record_scope := rt.saved_record_scope;

end;

end;

end;

-- "... a value parameter of type POINTER TO T

-- (where T is a record type). The procedure is bound to the type

-- T and is considered local to it"

match value_formal(?,?rtype) begin

case rtype.base_type begin

match pointer_type(?ty) begin

case ty.base_type begin

match ?rt=record_type(...) begin

insert_record_scope := rt.saved_record_scope;

end;

end;

end;

end;

end;

end;

end; -- match bound_proc_decl(...)

match field(?,?) begin

insert_record_scope := d.record_scope;

is_record_scope := true;

end;

else

insert_scope := d.scope;

end;

-- insert ourselves in this scope

-- and then check for redeclaration (and forwarding)

-- and overriding of inherited declarations

redeclared : remote Declaration := nil;

if is_record_scope then

if insert_record_scope /= nil then

insert_record_scope.local_record_decls :> {d};

redeclared := find_local_record_decl(name,insert_record_scope);

case insert_record_scope begin

match nested_record_contour(?parent_scope) begin

d.overrides := find_record_decl(name,parent_scope);

end;

end;

endif;

else

if insert_scope /== nil then

insert_scope.local_decls :> {d};

redeclared := find_local_decl(name,insert_scope);

endif;
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endif;

case redeclared begin

match !nil begin end;

match !d begin end; -- OK if we find ourselves:

match forward(...) begin

redeclared.forwarding_decls :> {d};

end;

else

d.is_redeclaration := true;

end;

end;

--- Definitions of use_decl and no_decl_reason

-- Field reference (a special case):

-- we have two matching rules for it: one for modules and

-- one for field reference:

-- if the fref is not a module use, this rule won't attribute

-- anything and the normal fref rule will kick in:

[T :: {Expression,Use}, var PHYLUM[]]

match ?:T=possibly_qualified(?module_use,?using=use_name(?name))

begin

case module_use.use_decl begin

match import(?,?module_use) begin

case module_use.use_decl begin

match module_decl(?,?body) begin

case find_local_decl(name,body.saved_scope) begin

match !nil begin

using.use_decl := nil;

using.no_decl_reason := "Identifier not in module";

end;

match declaration(identifier(?,not_exported())) begin

using.use_decl := nil;

using.no_decl_reason := "Identifier not exported";

end;

-- otherwise, just use the decl:

match ?decl begin

using.use_decl := decl;

end;

end;

end;

else

-- force a default case (avoid cascading error messages)

using.use_decl := nil;

using.no_decl_reason := "";

end;

end;

end;
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end;

-- copy information to the qualified use as well.

match ?qu=qualified(?,?eu) begin

qu.use_decl := eu.use_decl;

end;

-- in Oberon2: x.f can be a shorthand for x^.f

-- and so we have a function that does the optional pointer dereference

-- for us if necessary:

private function optptr_deref(t : remote Type) : remote Type

begin

case t.base_type begin

match pointer_type(?t) begin

result := t;

end;

else

result := t;

end;

end;

match fref(?expr,?field=use_name(?name),...) begin

case optptr_deref(expr.expr_type).base_type begin

match ?rt=record_type(...) begin

found : remote Declaration :=

find_record_decl(name,rt.saved_record_scope);

field.use_decl := found;

if found == nil then

field.no_decl_reason := "Undeclared field";

endif;

end;

else

field.use_decl := nil;

field.no_decl_reason := ""; -- avoid multiple errors

end;

end;

-- There are two places where definition is not required before use:

-- when we are dealing with other modules and when we are looking up

-- a local pointer type.

-- for modules, we have to make sure we don't have a circular import,

-- if we do then our "dynamic" attributes could be truly circular.

match ?md=module_decl(?,block({...,import(?,?u=use_name(?name)),...},?))

begin

mref : remote Declaration :=

find_local_decl(name,module_scope);

if mref == nil then

u.use_decl := nil;

u.no_decl_reason := "Undeclared module";

elsif mref == md then
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-- Section 11: "A module must not import itself"

u.use_decl := nil;

u.no_decl_reason := "Illegal self-import";

elsif not check_import(md,{},mref) then

-- Section 11: "...cyclic import of modules is illegal"

u.use_decl := nil;

u.no_decl_reason := "Illegal indirect self-import";

else

u.use_decl := mref;

endif;

end;

type ModuleSet := ORDERED_SET[remote Declaration]((==),(<<));

-- This function returns false if having the importer import the given

-- module would cause an import of the original module.

-- "true" being returned means it is OK to import the given module.

-- Note that the second argument is used to ensure that a cyclic import

-- elsewhere in the module import structure doesn't cause this function

-- to loop endlessly. This function could be made into a circular

-- attribute instead.

function check_import(importer : remote Declaration;

cycle_check : ModuleSet;

a_module : remote Declaration)

collection result : Boolean :> true, (and)

begin

if a_module = importer then

result :> false;

elsif a_module /= nil and a_module not in cycle_check then

new_cycle_check : ModuleSet := {cycle_check...,a_module};

for a_module begin

match module_decl(?,block(decls:={...,import(?,use_name(?mname)),...}))

begin

result :>

check_import(importer,new_cycle_check,

find_local_decl(mname,module_scope));

end;

end;

endif;

end;

-- pointer types can be forward references:

match pointer_type(named_type(?u=use_name(?name))) begin

u.use_decl := find_decl(name,u.scope);

end;

-- otherwise we check for definition before use:

match ?u=use_name(?name) begin

found : remote Declaration := find_decl(name,u.scope);

if found /== nil then

if found << u or found.is_builtin then
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u.use_decl := found;

elsif u.use_decl == nil then

u.no_decl_reason := "Illegal forward use";

endif;

endif;

end;

-- fill in the default error message

match ?u=use_name(?) begin

if u.use_decl == nil then

u.no_decl_reason := "Undeclared identifier";

endif;

end;

end;

-- OBERON2_SYMTAB cannot be compiled separately

-- because it relies on things that rely on

-- this module:

pragma no_separate(module OBERON2_SYMTAB);

B.3.3 Expression Types

module OBERON2_EXPR_TYPE[T :: var OBERON2_TREE[]]

(use_decl : function (_ : remote T$Use) : remote T$Declaration)

extends T

begin

-- an attribute that handles the type resolution of type names

-- Note that it must be dynamic because it is copied across

-- type name uses.

attribute Type.base_type : remote Type := any;

pragma dynamic(base_type);

attribute Expression.expr_type : remote Type := any;

attribute Expression.implicitly_guarded : Boolean := false;

-- "expr_type" is not correct for procedure names

-- used in expressions, so we have another attribute to handle

-- procedure values ("expr_header")

attribute Expression.expr_header : remote Header := nil;

-- if the expr_type is a valid procedure type then the header

-- is immediately available:

match ?e:Expression begin

case e.expr_type begin

match proc_type(?header) begin

e.expr_header := header;

end;

end;

end;
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private;

--- BASE TYPES

-- each type has a base type, that is, one that

-- makes sure we get past the name of the type to a real type constructor

match ?ty1=named_type(?using) begin

case using.use_decl begin

match type_decl(?,?ty2) begin

ty1.base_type := ty2.base_type;

end;

end;

end;

match ?ty=pseudo_type() begin

ty.base_type := any;

end;

match ?ty:Type begin

ty.base_type := ty;

end;

--- EXPRESSION TYPES

-- Use's come in two places:

-- in named_expr's and in fref's (could be imported entity)

-- In either case, we follow similar rules:

attribute Use.use_type : remote Type := any;

attribute Use.use_header : remote Header := nil;

match ?u=use_name(...) begin

case use_decl(u) begin

match const_decl(?,?value) begin

u.use_type := value.expr_type;

end;

match type_decl(...) begin

u.use_type := a_type;

end;

match var_decl(?,?shape) begin

u.use_type := shape.base_type;

end;

match proc_decl(?header,?) begin

-- NB: no type, but instead a header:

u.use_header := header;

end;

match forward(?header) begin

u.use_header := header;
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end;

match formal(?,?shape) begin

u.use_type := shape.base_type;

end;

-- to handle field references:

match field(?,?shape) begin

u.use_type := shape.base_type;

end;

end;

end;

-- With statements change the type of the variable

-- but we have to watch out for multiple with statements on the same

-- variable.

type WithList := LIST[remote Statement];

[phylum T :: PHYLA] attribute T.active_withs : WithList := {};

match ?w=with_stmt(body:=?body) begin

for s in body begin

s.active_withs := {w} ++ w.active_withs;

end;

end;

-- otherwise we copy down (by default)

[phylum PT,CT :: PHYLA] begin

match ?p:PT=parent(?c:CT) begin

c.active_withs := p.active_withs;

end;

end;

[phylum PT,CT :: PHYLA;

phylum ST :: SEQ_PHYLA, SEQUENCE[CT]] begin

match ?p:PT=parent(ST${...,?c:CT,...}) begin

c.active_withs := p.active_withs;

end;

end;

match ?e=named_expr(?using) begin

case e.active_withs begin

-- case selects the first match!

match {...,with_stmt(named_expr(?wuse),?guard_type,...),...}

if wuse.use_decl /== nil

if wuse.use_decl == using.use_decl

begin

e.implicitly_guarded := true;

e.expr_type := guard_type.base_type;

end;

else

-- otherwise we get the type or header from the use:

e.expr_type := using.use_type;
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e.expr_header := using.use_header;

end;

end;

match ?e=unop(?,?arg) begin

e.expr_type := arg.expr_type; -- for minus & not

end;

type Types := LIST[remote Type];

-- handle binop's in three cases:

-- predicate operators are easy---the result is always boolean;

-- divide (/) is special---it always forces a real result;

-- otherwise we choose the least common type.

match ?e=binop(predicate_operator(),?,?) begin

e.expr_type := boolean;

end;

match ?e=binop(divide(),?e1,?e2) begin

case Types${e1.expr_type,e2.expr_type} begin

match {...,?ty=longreal_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=set_type(),...} begin

e.expr_type := ty;

end;

else

e.expr_type := real;

end;

end;

match ?e=binop(arithmetic_operator(),?e1,?e2) begin

case Types${e1.expr_type,e2.expr_type} begin

match {...,?ty=longreal_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=real_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=longint_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=integer_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=shortint_type(),...} begin

e.expr_type := ty;

end;

match {...,?ty=set_type(),...} begin

e.expr_type := ty;

end;

end;
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end;

match ?e=funcall(?func,?actuals) begin

-- we have to handle a lot of special cases:

case func.expr_header begin

match header(result:=abs_type()) begin

case actuals begin

match {?first} begin

e.expr_type := first.expr_type;

end;

end;

end;

match header(result:=long_type()) begin

case actuals begin

match {?op} begin

case op.expr_type begin

match shortint_type() begin

e.expr_type := integer;

end;

match integer_type() begin

e.expr_type := longint;

end;

match real_type() begin

e.expr_type := longreal;

end;

end;

end;

end;

end;

match header(result:=max_type()) begin

case actuals begin

match {?op} begin

case op.expr_type begin

match set_type() begin

e.expr_type := integer;

end;

else

e.expr_type := op.expr_type;

end;

end;

end;

end;

match header(result:=short_type()) begin

case actuals begin

match {?op} begin

case op.expr_type begin

match integer_type() begin

e.expr_type := shortint;

end;

match longint_type() begin
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e.expr_type := integer;

end;

match longreal_type() begin

e.expr_type := real;

end;

end;

end;

end;

end;

-- otherwise a (fairly) normal procedure

match header(result:=?rt) begin

e.expr_type := rt.base_type;

end;

end;

end;

-- type guards are not syntactically distinguishable from funcalls:

-- we put this after funcall to make sure it doesn't catch things

-- like SIZE(T). The latter will have a expr_header and will

-- be handled by the earlier patterns

match ?e=funcall(?,{named_expr(?using)}) begin

case using.use_decl begin

match type_decl(?,?ty) begin

e.expr_type := ty.base_type;

end;

end;

end;

match ?e=is_test(...) begin

e.expr_type := boolean;

end;

-- NB: type guards are syntactically indistinguishable from

-- procedure calls so any type guards in the tree must be generated

-- directly.

match ?e=type_guard(?,?guard) begin

e.expr_type := guard.base_type;

end;

match ?e=aref(?array,?) begin

case array.expr_type begin

match array_type(?et) begin

e.expr_type := et.base_type;

end;

match pointer_type(?at) begin

case at.base_type begin

match array_type(?et) begin

e.expr_type := et.base_type;

end;
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end;

end;

end;

end;

-- field or imported ID

match ?e=fref(?,?field,...) begin

e.expr_type := field.use_type;

e.expr_header := field.use_header;

end;

--(We assume this is taken care of in the parser or

--an earlier canonicalization)

--

-- fetch is syntactic sugar for "super":

-- match ?e=fetch(fref(?,?field)) begin

-- case field.use_decl begin

-- match proc_decl(header:=?header) begin

-- e.expr_header := header;

-- end;

-- end;

-- end;

match ?e=fetch(?pe) begin

case pe.expr_type begin

match pointer_type(?ty) begin

e.expr_type := ty.base_type;

end;

end;

end;

match ?e=set_expr(...) begin

e.expr_type := set;

end;

match ?e=constant_expression(?con) begin

case con begin

match Constant$shortint_constant(...) begin

e.expr_type := shortint;

end;

match Constant$integer_constant(...) begin

e.expr_type := integer;

end;

match Constant$longint_constant(...) begin

e.expr_type := longint;

end;

match Constant$real_constant(...) begin

e.expr_type := real;

end;

match Constant$longreal_constant(...) begin
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e.expr_type := longreal;

end;

match Constant$string_constant(...) begin

e.expr_type := string;

end;

match Constant$char_constant(...) begin

e.expr_type := char;

end;

match Constant$set_constant(...) begin

e.expr_type := set;

end;

match Constant$boolean_constant(...) begin

e.expr_type := boolean;

end;

end;

end;

end;

pragma no_separate(module OBERON2_EXPR_TYPE);

B.4 Compile-Time Computation

The Oberon2 language implicitly requires certain computations to be carried out
at compile-time. In particular, the sizes of records and expressions involving only constant
operands must be computed at compile time.

type Oberon2Sizes := ORDERED_SET[Integer]((=),(<));

class OBERON2_MACHINE_SIZES[] begin

byte_bits : Integer;

char_size : Integer;

shortint_size : Integer;

integer_size : Integer;

longint_size : Integer;

real_size : Integer;

longreal_size : Integer;

sub_alignment_sizes : Oberon2Sizes;

max_alignment : Integer; -- alignment can be in multiples of this size

address_size : Integer;

end;

module OBERON2_COMPILE_COMPUTE[T :: var OBERON2_TREE[],

var OBERON2_SYMTAB[T],

var OBERON2_EXPR_TYPE[T],

OBERON2_MACHINE_SIZES[]]

extends T
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begin

-- use the machine dependent values to set up the integer types:

function max_twos_complement(bytes : Integer) : Integer

:= (2^(bytes*byte_bits-1))-1;

function min_twos_complement(bytes : Integer) : Integer

:= -(2^(bytes*byte_bits-1));

max_shortint : Integer := max_twos_complement(shortint_size);

min_shortint : Integer := min_twos_complement(shortint_size);

max_integer : Integer := max_twos_complement(integer_size);

min_integer : Integer := min_twos_complement(integer_size);

max_longint : Integer := max_twos_complement(longint_size);

min_longint : Integer := min_twos_complement(longint_size);

set_size : Integer := longint_size;

max_set : Integer := set_size-1;

min_set : Integer := 0;

-- return the next legal size

-- all sizes must be in the set sub_alignment_sizes or a multiple

-- of max_alignment:

function round_up_size(size : Integer) : Integer begin

if size >= max_alignment then

result := ((size+max_alignment-1)/max_alignment)*max_alignment;

elsif size in sub_alignment_sizes then

result := size;

else

result := round_up_size(size+1);

endif;

end;

function align_size(size : Integer; alignment : Integer) : Integer begin

if alignment >= max_alignment then

result := ((size+max_alignment-1)/max_alignment)*max_alignment;

elsif alignment = 0 then -- no alignment

result := size;

else

result := ((size+alignment-1)/alignment)*alignment;

endif;

end;

--- TYPES and TYPE SIZES

-- compute type sizes and alignments

attribute Type.type_size : Integer := 0;

attribute Type.fixed_size_type : Boolean := true; -- open arrays aren't

-- The dependencies are never circular, but static
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-- analysis will fail to find a safe dependency order,

-- and so these attributes are declared to need "dynamic dependency

-- tracking".

pragma dynamic(type_size);

pragma dynamic(fixed_size_type);

-- basic types

match ?ty=boolean_type() begin

ty.type_size := char_size;

end;

match ?ty=char_type() begin

ty.type_size := char_size;

end;

match ?ty=set_type() begin

ty.type_size := set_size;

end;

match ?ty=shortint_type() begin

ty.type_size := shortint_size;

end;

match ?ty=integer_type() begin

ty.type_size := integer_size;

end;

match ?ty=longint_type() begin

ty.type_size := longint_size;

end;

match ?ty=real_type() begin

ty.type_size := real_size;

end;

match ?ty=longreal_type() begin

ty.type_size := longreal_size;

end;

match ?ty=named_type(?u) begin

case u.use_decl begin

-- a cycle:

match ?td=type_decl(...) if td ^^ ty begin

ty.fixed_size_type := true;

ty.type_size := 0;

end;

match type_decl(value:=?subty) begin

ty.fixed_size_type := subty.fixed_size_type;

ty.type_size := subty.type_size;

end;

end;

end;

-- POINTER TO ARRAY is handled differently:

match ?ty=pointer_type(?at=open_array_type(...)) begin

ty.type_size := (1 + at.open_ranges)*address_size;

end;



225

match ?ty=pointer_type(...) begin

ty.type_size := address_size;

end;

match ?ty=proc_type(...) begin

-- The restrictions on local procedures means that there

-- is no need to keep environments with procedure values

ty.type_size := address_size;

end;

attribute Type.open_ranges : Integer := 0;

match ?ty=open_array_type(?elem_ty) begin

ty.fixed_size_type := false;

ty.open_ranges := 1 + elem_ty.open_ranges;

-- but it's still useful to have this value around:

ty.type_size := elem_ty.type_size;

end;

match ?ty=fixed_array_type(?length,?elem_ty) begin

ty.fixed_size_type := elem_ty.fixed_size_type;

case length.constant_value begin

match Constant$some_integer_constant(?v) begin

ty.type_size := round_up_size(v*elem_ty.type_size);

end;

end;

end;

-- the most complicated type:

match ?ty=record_type(?extending,?fields) begin

prefix_size : Integer;

case extending begin

match no_type() begin

-- need space for a type link

prefix_size := address_size;

end;

else

prefix_size := extending.type_size;

end;

total_size : Integer;

field.min_offset for field in fields, total_size :=

prefix_size, field.next_offset for field in fields;

ty.type_size := round_up_size(total_size);

end;

attribute Declaration.min_offset : Integer := 0;

attribute Declaration.offset : Integer := 0;

attribute Declaration.next_offset : Integer := 0;

match ?d=field(?,?shape) begin

d.offset := align_size(d.min_offset,shape.type_size);

d.next_offset := d.offset + shape.type_size;

end;
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--- COMPILE-TIME CONSTANTS

-- "A constant expression in an expression that can be evaluated by

-- a mere textual scan without actually executing the program. ..."

attribute Expression.expr_constant : Boolean := false;

-- sometimes we need the value:

-- (We need a default to avoid getting undefined attribute errors

-- for erroneous programs). We create new tree nodes in a different

-- forest to represent the values:

attribute Expression.constant_value : Constant := Constant$nil;

-- this information stores information for MIN and MAX:

attribute Expression.constant_type_value : remote Type := nil;

type Errors := BAG[String];

collection attribute Expression.errors : Errors;

procedure add_error(e : remote Expression; message : String) begin

e.errors :> {message};

end;

-- "It's operands are constants or ..."

match ?e=constant_expression(?v) begin

e.expr_constant := true;

e.constant_value := v;

end;

-- NB: an imported constant masquerades as a field reference:

pattern possible_constant_use(u : Use) : Expression

:= named_expr(?u),fref(?,?u,?);

pattern builtin(name : Symbol) : Declaration :=

?d=forward(header(identifier(?name,?),...))

if d.is_builtin;

function builtin_name(x : remote Declaration) : String := ""

begin

case x begin

match builtin(?name) begin

result := symbol_name(name);

end;

end;

end;

match ?e=possible_constant_use(?using) begin

case using.use_decl begin

match const_decl(?,?value) begin

e.expr_constant := true;
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e.constant_value := value.constant_value;

end;

-- Presumably: types count as constant too

-- (for the purpose of MAX and MIN)

match type_decl(value:=?ty) begin

e.expr_constant := true;

e.constant_type_value := ty.base_type;

end;

-- "... predeclared functions that can be evaluated

-- at compile time."

-- Apparently all the predeclared functions can be evaluated at

-- compile time.

match builtin(...) begin

e.expr_constant := true;

end;

end;

end;

-- an arithmetic operation is constant if all operands are constant

match ?e=binop(?op,?e1,?e2) begin

e.expr_constant := e1.expr_constant and e2.expr_constant;

if e.expr_constant then

a1 : Constant := e1.constant_value;

a2 : Constant := e2.constant_value;

case op begin

-- NB: the infix operators are defined for Constant!

match log_or() begin

-- NB: type checking is done elsewhere

e.constant_value := a1 + a2; -- defined to be "or" for booleans;

end;

match log_and() begin

e.constant_value := a1 * a2; -- "and" for booleans

end;

match plus() begin

e.constant_value := a1 + a2;

end;

match minus() begin

e.constant_value := a1 - a2;

end;

match times() begin

e.constant_value := a1 * a2;

end;

match divide() begin

e.constant_value := a1 / a2;

end;

match mod() begin

e.constant_value := Constant$mod(a1,a2);

end;

match div() begin

e.constant_value := Constant$div(a1,a2);
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end;

match equal() begin

e.constant_value := Constant$boolean_constant(a1 = a2);

end;

match not_equal() begin

e.constant_value := Constant$boolean_constant(a1 /= a2);

end;

match less() begin

e.constant_value := Constant$boolean_constant(a1 < a2);

end;

match less_equal() begin

e.constant_value := Constant$boolean_constant(a1 <= a2);

end;

match greater() begin

e.constant_value := Constant$boolean_constant(a1 > a2);

end;

match greater_equal() begin

e.constant_value := Constant$boolean_constant(a1 >= a2);

end;

match in_set() begin

case Constants${a1,a2} begin

match {Constant$some_integer_constant(?v),

Constant$set_constant(?rep)} begin

e.constant_value := Constant$boolean_constant(logbitp(v,rep)/=0);

end;

end;

end;

end; -- case op

endif; -- if constant

end; -- match binop

-- similarly for unop:

match ?e=unop(?op,?e1) begin

e.expr_constant := e1.expr_constant;

if e.expr_constant then

a1 : Constant := e1.constant_value;

case op begin

match plus() begin

e.constant_value := a1;

end;

match minus() begin

e.constant_value := -a1;

end;

match log_not() begin

e.constant_value := -a1; -- "not" for booleans

end;

end; -- case op

endif; -- if constant

end; -- match unop
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-- a function call is constant if its function is constant

-- (in this case, "constant" means "predefined")

-- and each of its arguments is constant.

match ?e=funcall(?func,?args) begin

e.expr_constant := func.expr_constant and

(arg.expr_constant for arg in args);

end;

-- Now we also have to figure out the values of these

-- constant expressions:

match ?e=funcall(named_expr(?u),?arg_nodes) begin

if e.expr_constant then

args : Constants := {arg.constant_value for arg in arg_nodes};

case u.use_decl begin

match builtin(!make_symbol("ABS")) begin

case args begin

match {?a} begin

e.constant_value := Constant$abs(a);

end;

end;

end; -- ABS

match builtin(!make_symbol("ASH")) begin

case args begin

match {Constant$some_integer_constant(?v1),

Constant$some_integer_constant(?v2)} begin

e.constant_value := Constant$longint_constant(ash(v1,v2));

end;

end;

end;

match builtin(!make_symbol("CAP")) begin

case args begin

match {Constant$char_constant(?c)} begin

e.constant_value := Constant$char_constant(to_upper(c));

end;

end;

end; -- match CAP

match builtin(!make_symbol("CHR")) begin

case args begin

match {Constant$some_integer_constant(?v)} begin

if v >= 0 and v <= 255 then -- as defined in the manual

e.constant_value := Constant$char_constant(int_char(v));

else

add_error(e,"Character constant out of range: " || v);

endif;

end;

end;

end; -- match CHR

match builtin(!make_symbol("ENTIER")) begin

case args begin
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match {?a} begin

e.constant_value := Constant$to_longint(a);

end;

end;

end;

match builtin(!make_symbol("LEN")) begin

-- LEN works on arrays, and thus on strings

-- and also thus on characters.

dimension : Integer := 0;

case args begin

match {?} begin end;

match {?,Constant$some_integer_constant(?v)} begin

if v < 0 then

add_error(e,"LEN given negative dimension");

else

dimension := v;

endif;

end;

else

add_error(e,"LEN requires a constant dimension");

end;

-- now case on the argument value first

-- to handle characters and strings

case first(args) begin

match Constant$char_constant(?) begin

if dimension > 0 then

add_error(e,"Strings have only one dimension");

endif;

e.constant_value := Constant$longint_constant(1);

end;

match Constant$string_constant(?s) begin

if dimension > 0 then

add_error(e,"Strings have only one dimension");

endif;

e.constant_value := Constant$longint_constant(length(s));

end;

else

-- otherwise look at the type

e.constant_value :=

get_dimension(e,first(arg_nodes).expr_type,dimension);

end;

end; -- match LEN

match builtin(!make_symbol("LONG")) begin

case args begin

match {Constant$real_constant(?v)} begin

e.constant_value := Constant$longreal_constant(IEEEwiden(v));

end;

-- the specification is really strange:

match {Constant$shortint_constant(?v)} begin

e.constant_value := Constant$integer_constant(v);
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end;

match {Constant$integer_constant(?v)} begin

e.constant_value := Constant$longint_constant(v);

end;

-- otherwise undefined (that's what's bad with the spec)

end;

end;

match builtin(!make_symbol("MAX")) begin

case arg_nodes begin

match {?ty} begin

case ty.constant_type_value begin

match shortint_type() begin

e.constant_value := Constant$shortint_constant(max_shortint);

end;

match integer_type() begin

e.constant_value := Constant$integer_constant(max_integer);

end;

match longint_type() begin

e.constant_value := Constant$longint_constant(max_longint);

end;

match real_type() begin

e.constant_value := Constant$real_constant(IEEEsingle$max);

end;

match longreal_type() begin

e.constant_value :=

Constant$longreal_constant(IEEEdouble$max);

end;

match set_type() begin

e.constant_value := Constant$integer_constant(max_set);

end;

end; -- case type

end;

end; -- case arg_nodes

end; -- match MAX

match builtin(!make_symbol("MIN")) begin

case arg_nodes begin

match {?ty} begin

case ty.constant_type_value begin

match shortint_type() begin

e.constant_value := Constant$shortint_constant(min_shortint);

end;

match integer_type() begin

e.constant_value := Constant$integer_constant(min_integer);

end;

match longint_type() begin

e.constant_value := Constant$longint_constant(min_longint);

end;

match real_type() begin

e.constant_value := Constant$real_constant(-IEEEsingle$max);

end;
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match longreal_type() begin

e.constant_value :=

Constant$longreal_constant(-IEEEdouble$max);

end;

match set_type() begin

e.constant_value := Constant$integer_constant(0);

end;

end; -- case type

end;

end; -- case arg_nodes

end; -- match MIN

match builtin(!make_symbol("ODD")) begin

case args begin

match {Constant$some_integer_constant(?v)} begin

e.constant_value := Constant$boolean_constant(odd(v));

end;

end;

end; -- ODD

match builtin(!make_symbol("ORD")) begin

case args begin

match {?a} begin

e.constant_value := Constant$integer_constant(Constant$ord(a));

end;

end;

end; -- ORD

match builtin(!make_symbol("SHORT")) begin

case args begin

match {Constant$longreal_constant(?v)} begin

e.constant_value := Constant$real_constant(IEEEnarrow(v));

end;

match {Constant$longint_constant(?v)} begin

e.constant_value := Constant$integer_constant(v);

end;

match {Constant$integer_constant(?v)} begin

e.constant_value := Constant$shortint_constant(v);

end;

end;

end; -- SHORT

match builtin(!make_symbol("SIZE")) begin

case arg_nodes begin

match {named_expr(?u)} begin

case u.use_decl begin

match type_decl(value:=?ty) begin

if ty.fixed_size_type then

e.constant_value :=

Constant$longint_constant(ty.type_size);

else

add_error(e,"SIZE applied to open array");

endif;

end;



233

end;

end;

end;

end; -- SIZE

end; -- case func

endif; -- if constant

end; -- match funcall

-- this should be in a standard library:

function to_upper(c : Character) : Character begin

if 'a' <= c and c <= 'z' then

result := int_char(char_code(c)+32); -- ASCII specific

else

result := c;

endif;

end;

-- Return the constant value for the given dimension of an array.

-- e is the source expression whose dimension is requested

-- t is the type of expression (or subarray on a recursive call)

-- dimension = 0 means the first dimension.

-- This procedure implements the predefined function LEN at compile-time.

-- It returns "nil" if the dimension could not be computed,

-- (for example if the corresponding dimension is "open").

var procedure get_dimension(e : remote Expression;

t : remote Type;

dimension : Integer) : Constant := Constant$nil

begin

case t.base_type begin

match any_type() begin end; -- don't cascade errors

match fixed_array_type(?size,?subtype) begin

if dimension = 0 then

result := size.constant_value;

else

result := get_dimension(e,subtype,dimension-1);

endif;

end;

match open_array_type(?subtype) begin

if dimension = 0 then

result := Constant$nil;

else

result := get_dimension(e,subtype,dimension-1);

endif;

end;

else

add_error(e,"LEN given array with not enough dimensions");

end;

end;

end;
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B.5 Checking for Correctness

-- Compile-time checks for Oberon2:

-- we use the information provided by the resolution phase

-- and by compile-time computations and check that there are no errors

module OBERON2_CHECK[T :: var OBERON2_TREE[],

var OBERON2_RESOLVE[T],

var OBERON2_COMPILE_COMPUTE[T]] extends T

begin

signature ERROR_NODES :=

{Declaration,Header,Receiver,Type,Statement,Case,

CaseLabel,Expression,Element,Use}, var PHYLUM[];

type Errors := BAG[String];

[phylum Node::ERROR_NODES] begin

collection attribute Node.errors : Errors;

-- an internal way to report an error

private procedure add_error(node : remote Node; message : String) begin

node.errors :> {message};

end;

end;

private;

-----------------------------------------------------------------

-- This module follows loosely along the pages of the Oberon-2 --

-- reference manual [Moessenboeck and Wirth 1993] --

-----------------------------------------------------------------

--- Section 4: Declaration and scope rules

-- (Much of this has been handled by OBERON2_SYMTAB)

-- "1. No identifier may denote more than one object within a given scope

-- (i.e. no identifier may be declared twice in a block)"

match ?d:Declaration begin

if d.is_redeclaration then

add_error(d,"This identifier already declared in this scope");

endif;

end;

-- other cases (where a look fails for some reason)

match ?using=use_name(?) begin

if using.use_decl == nil and using.no_decl_reason /= "" then

add_error(using,using.no_decl_reason);

endif;

end;

-- warn about unused declarations:
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collection attribute Declaration.decl_used : Boolean :> false, (or);

match ?u:Use begin

if u.use_decl /= nil then

u.use_decl.decl_used :> true;

endif;

end;

match ?d=declaration(identifier(?,not_exported())) begin

if not d.decl_used then

add_error(d,"Warning: declaration not used");

endif;

end;

-- "Identifiers marked with "-" in their declarations are read-only

-- in importing modules"

-- Presumably: this mark is only relevant for variables and fields.

pattern normally_writeable(info : ExportInfo) : Declaration

:= var_decl(identifier(?,?info),?),field(identifier(?,?info),?),

var_formal(identifier(?,?info),?);

attribute Use.use_variable : Boolean := false;

-- NB: using importing variables is read as a field reference:

match ?using:Use begin

case using.use_decl begin

match !nil begin

using.use_variable := true; -- avoid cascading error messages

end;

match ?d=normally_writeable(?info) begin

case info begin

match readonly_exported() begin

using.use_variable :=

using.declared_in_module == d.declared_in_module;

end;

else

using.use_variable := true;

end;

end;

else

using.use_variable := false;

end;

end;

--- Section 5: Constant declarations

-- "A constant declaration associates an identifier with a constant value"

match const_decl(?,?expr) begin

ensure_constant(expr);

end;

procedure ensure_constant(x : remote Expression)

begin
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if not x.expr_constant then

add_error(x,"not constant");

endif;

end;

--- Section 6: Type declarations

-- "A structured type cannot contain itself"

-- This is already illegal because the type name would be a forward

-- reference.

-- Section 6.1: Basic types

-- Section 6.2: Array types

match fixed_array_type(?l,?) begin

-- from the grammar, array length must be a constant expression

ensure_constant(l);

-- presumably: the length must be an integer type:

ensure_assignment_compatible(l,longint);

end;

-- "[open_array_types] are restricted to pointer base types,

-- element types of open arrays and formal parameter types".

[T :: PHYLA] match ?parent:T=parent(?ty=open_array_type(...)) begin

case parent begin

match pointer_type(...) :? T begin end;

match open_array_type(...) :? T begin end;

match formal(...) :? T begin end;

else

add_error(ty,"Cannot use open array types in this context");

end;

end;

-- Section 6.3: Record types

-- "a record type can be declared as an extension of another record type"

match record_type(?ty,?) begin

case ty.base_type begin

match record_type(...) begin end;

match any_type() begin end; -- avoid multiple errors

match no_type() begin end;

else

add_error(ty,"Can only extend record types");

end;

end;

var function record_extends(t1,t2 : remote Type) : Boolean

begin
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if t1 == t2 then

result := true;

else

case t1 begin

match record_type(?ext,...) begin

result := record_extends(ext.base_type,t2);

end;

else

result := false;

end;

endif;

end;

-- "All identifiers declared in the extended record must be different

-- from the identifiers declared in its base type record(s)"

-- NB: OBERON2_SYMTAB has already computed an "overrides" attribute

-- that does most of the work for us:

-- Presumably: fields cannot override procedures either

match ?f=field(...) begin

if f.overrides /== nil then

add_error(f,"Already declared in a base type record");

endif;

end;

-- Section 6.4: Pointer types

-- "[The pointer base type] must be a record or array type"

match pointer_type(?base) begin

case base.base_type begin

match any_type() begin end; -- avoid error cascades

match array_type(...) begin end;

match record_type(...) begin end;

else

add_error(base,"Pointer base types must be arrays or records");

end;

end;

type Types := LIST[remote Type];

-- "If a type T1 is an extension and P1 is of type POINTER TO T1,

-- then P1 is also an extension of P [being POINTER TO T]"

var function pointer_extends(p1,p2 : remote Type) : Boolean

begin

case Types${p1,p2} begin

match {pointer_type(?t1),pointer_type(?t2)} begin

result := record_extends(t1.base_type,t2.base_type);

end;

else

result := false;

end;
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end;

-- Section 6.5: Procedure types

-- "If a procedure is assigned to a variable of type T, ...

-- "P must not be a predeclared or type-bound procedure nor may it be

-- local to another procedure".

-- Presumably: local procedures may not be passed as procedures either.

-- Apparently this means that local procedures or type-bound

-- procedures may not be used in any way except to be called.

attribute Declaration.proc_is_local : Boolean := false;

match proc_decl(body:=block(decls:={...,?d=proc_decl(...),...})) begin

d.proc_is_local := true;

end;

attribute Expression.called : Boolean := false;

match funcall(?proc,?) begin

proc.called := true;

end;

match call_stmt(?call) begin

call.called := true;

end;

match ?e=named_expr(?using) begin

case using.use_decl begin

match ?proc=proc_decl(...) begin

if proc.proc_is_local and not e.called then

add_error(e,"Illegal use of local procedure");

endif;

end;

end;

end;

match ?e=fref(?,?using,...) begin

case using.use_decl begin

match proc_decl(header:=header(receiver:=receiver(...))) begin

if not e.called then

add_error(e,"Illegal use of type-bound procedure");

endif;

end;

end;

end;

-- Section 7: Variable declarations

-- Section 8: Expressions
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-- NB: copy errors from the compile compute module:

match ?e:Expression begin

e.errors :> {e.T$errors...};

end;

-- 8.1 Operands

-- NB: the manual does not say what a variable is.

-- I inferred the following rules.

attribute Expression.expr_variable : Boolean := false;

procedure ensure_variable(v : remote Expression) begin

if not v.expr_variable then

add_error(v,"Not a variable");

endif;

end;

match ?e=named_expr(?u) begin

e.expr_variable := u.use_variable;

end;

-- "If a designates an array, then a[e] ... The type of e must be

-- an integer type"

-- Presumably: a must be an array type (or pointer to same)

match aref(?a,?e) begin

ensure_assignment_compatible(e,longint);

case a.expr_type begin

match array_type(...) begin end;

match any_type(...) begin end;

match pointer_type(?ty) begin

case ty.base_type begin

match array_type(...) begin end;

match any_type(...) begin end;

else

add_error(a,"not a pointer to an array");

end;

end;

else

add_error(a,"not an array");

end;

end;

-- "If r designates a record then r.f denotes the field ..."

-- Presumably: r must be a record type (or pointer to the same)

match fref(?r,?,...) begin

case r.expr_type begin

match record_type(...) begin end;

match any_type(...) begin end;

match pointer_type(?ty) begin

case ty.base_type begin
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match record_type(...) begin end;

match any_type(...) begin end;

else

add_error(r,"not a pointer to a record");

end;

end;

else

add_error(r,"not a record");

end;

end;

-- "If p designates a pointer, p^ designates the variable which is

-- referenced by p"

-- Presumably: p must be of pointer_type

match ?e=fetch(?p) begin

e.expr_variable := true;

case p.expr_type begin

match pointer_type(...) begin end;

match any_type(...) begin end;

else

add_error(p,"not a pointer");

end;

end;

-- "If a or r and read-only then a[e] and r.f are read-only"

-- Apparently this ends up meaning:

-- a is variable <=> a[e] is variable

-- r is variable and f is variable <=> r.f is variable

-- Note that this rule seems to imply that if a^[e] is abbreviated

-- as a[e] then it will have more restricted readonly characteristics,

-- but the example given excludes this interpretation.

match ?result=aref(?a,?) begin

case a.expr_type begin

match pointer_type(...) begin

result.expr_variable := true;

end;

else

result.expr_variable := a.expr_variable;

end;

end;

match ?result=fref(?r,?f,...) begin

-- we need to restrict it so it only applies for fields:

case f.use_decl begin

match field(...) begin

case r.expr_type begin

match pointer_type(...) begin

result.expr_variable := f.use_variable;

end;

else

result.expr_variable := r.expr_variable and f.use_variable;
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end;

end;

else

-- an external module reference:

result.expr_variable := f.use_variable;

end;

end;

-- "[A type guard] is applicable if:

-- 1. v is a variable parameter of record type or v is a pointer and if

-- 2. T is an extension of the static type of v"

-- These conditions are identical to those for type tests, so we write

-- a procedure to do the test:

procedure ensure_type_guard_applicable(v : remote Expression;

uT : remote Use)

begin

case uT.use_decl begin

match !nil begin end;

match type_decl(?,?T) begin

-- case 1b & 2

if not pointer_extends(v.expr_type,T.base_type) then

case v.expr_type begin

match any_type() begin end;

match pointer_type(...) begin

add_error(T,"Not a base pointer type");

end;

match record_type(...) begin

case v begin

match named_expr(?uv) begin

case uv.use_decl begin

match !nil begin end;

-- case 1a & 2

match var_formal(...) begin

if not record_extends(v.expr_type,T.base_type) then

add_error(T,"Not a base record type");

endif;

end;

else

add_error(v,"Not a var formal");

end;

end; -- match named_expr

else

add_error(v,"Not a pointer");

end; -- case v

end; -- match record-type

else

add_error(v,"Pointer or record required");

end; -- case v.expr_type

endif;
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end; -- match type_decl(...)

else

add_error(uT,"Type identifier required");

end; -- case uT.use_decl

end;

-- NB: some type guards are read as function calls, but OBERON2_RESOLVE

-- has defined a pattern for us.

match ?e=actual_type_guard(?v,?uT) begin

ensure_type_guard_applicable(v,uT);

e.expr_variable := v.expr_variable;

end;

-- "The actual parameters must correspond to the formal parameters

-- as in proper procedure calls (see 10.1)."

-- See section 10.1

-- Section 8.2: Operators

-- "The operands must be expression compatible with respect to the operator

-- (see App. A)."

-- See section A: expression compatible OBERON2_TYPE

pattern op(op:Operator; arg:Expression) : Expression :=

unop(?op,?arg),binop(?op,?arg,?),binop(?op,?,?arg);

-- Section 8.2.1: Logical operators

-- "These operators apply to BOOLEAN operands ..."

match op(logical_operator(),?arg) begin

ensure_assignment_compatible(arg,boolean);

end;

-- Section 8.2.2 Arithmetic operators and Section 8.2.3 Set operators

-- "The operators +,-,*, and / apply to operands of numeric type"

-- (but also to sets)

pattern simple_arithmetic_op() : Operator := plus(),minus(),times(),divide();

match op(simple_arithmetic_op(),?arg) begin

if arg.expr_type /= set then

ensure_assignment_compatible(arg,longreal);

endif;

end;

-- but if one is a set, the other must be too:

match binop(simple_arithmetic_op(),?arg1,?arg2) begin

if arg1.expr_type = set then

ensure_assignment_compatible(arg2,set);

elsif arg2.expr_type = set then

ensure_assignment_compatible(arg1,set);

endif;

end;
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-- "The operators DIV and MOD apply to integer operands only."

match op(integer_operator(),?arg) begin

ensure_assignment_compatible(arg,longint);

end;

-- "A set constructor defines the value of a set by listing its elements

-- between curly brackets. The elements must be integers in the range

-- 0..MAX(SET). A range a..b denotes all integers in the interval

-- [a,b]"

-- The type can be checked at this time but the values at worst

-- can only be checked at runtime:

pattern element(x : Expression) : Element

:= single_element(?x),range_element(?x,?),range_element(?,?x);

match element(?x) begin

ensure_assignment_compatible(x,longint);

end;

-- Section 8.2.4 Relations

-- "The relations =, #, <, <=, >, and >= apply to the numeric types

-- CHAR, strings, and character arrays ... . The relations = and #

-- also apply to BOOLEAN and SET, as well as to pointer and procedure

-- types (including the value NIL)."

type TypeList := LIST[remote Type];

-- check < <= > >=

pattern simple_comparison_operator() : Operator

:= less(), less_equal(), greater(), greater_equal();

match ?e=binop(simple_comparison_operator(),?arg1,?arg2) begin

case TypeList${arg1.expr_type,arg2.expr_type} begin

match {numeric_type(),numeric_type()} begin end;

match {string_type(),string_type()} begin end;

match {...,any_type(),...} begin end;

else

add_error(e,"incompatible operands to comparison");

end;

end;

-- check # and =

match ?e=binop(equality_operator(),?arg1,?arg2) begin

case TypeList${arg1.expr_type,arg2.expr_type} begin

match {numeric_type(),numeric_type()} begin end;

match {string_type(),string_type()} begin end;

match {boolean_type(),boolean_type()} begin end;

match {set_type(),set_type()} begin end;

match {nil_type(),pointer_type(...)} begin end;

match {pointer_type(...),nil_type()} begin end;

match {pointer_type(?t0),pointer_type(?t1)}

if record_extends(t0,t1) or record_extends(t1,t0)

begin end;

match {nil_type(),proc_type(...)} begin end;
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match {proc_type(...),nil_type()} begin end;

match {proc_type(?h1),proc_type(?h2)}

if headers_match(h1,h2)

begin end;

match {...,any_type(),...} begin end;

else

add_error(e,"incompatible operands to equality test");

end;

end;

-- "x IN s ... x must be of an integer type, and s of type SET."

match ?e=binop(in_set(),?x,?s) begin

ensure_assignment_compatible(x,longint);

ensure_assignment_compatible(s,set);

end;

-- "v IS T stands for "the dynamic type of v is T (or an extension of T)"

-- and is called a type test. It is applicable if

-- 1: v is a variable parameter of record type or v is a pointer, and if

-- 2: T is an extension of the static type of v"

-- These conditions are the same as for type guards

match is_test(?v,named_type(?uT)) begin

ensure_type_guard_applicable(v,uT);

end;

--- Section 9: Statements

-- Section 9.1: Assignments

-- "The expression must be assignment compatible with the variable"

match assign_stmt(?lhs,?rhs) begin

ensure_variable(lhs);

ensure_assignment_compatible(rhs,lhs.expr_type);

end;

-- Section 9.2: Procedure calls

-- "A procedure call activates a procedure."

-- Presumably: the procedure must be a proper procedure

match call_stmt(?call) begin

case call.expr_type begin

match any_type() begin end;

match no_type() begin end;

else

add_error(call,"Not a proper procedure call");

end;

end;

-- "If a formal parameter is a variable parameter, the corresponding

-- actual parameter must be a designator denoting a variable..."
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-- Presumably: the rules for proper procedure and function procedure

-- parameters is the same. See Section 10.1

-- Section 9.3: Statement sequences

-- Section 9.4: If statements

-- NB: elsifs are desugared before we see them here.

-- "The Boolean expression preceding a statement sequence is called its

-- guard."

-- Presumably: the expression must be of boolean type

match if_stmt(?guard,...) begin

ensure_assignment_compatible(guard,boolean);

end;

-- Section 9.5: Case statements

-- "The case expression must either be of an integer type that includes

-- the type of all case labels, or both the case expression and the case

-- labels must be of type CHAR."

-- This can be restated as:

-- the case expression must be of integer type or of type CHAR

-- the case labels must be included in the type of the case expression

match case_stmt(?expr,...) begin

case expr.expr_type begin

match any_type() begin end;

match shortint_type() begin end;

match integer_type() begin end;

match longint_type() begin end;

match char_type() begin end;

else

add_error(expr,"Required integer or character");

end;

end;

pattern case_label(e : Expression) : CaseLabel

:= single_label(?e),range_label(?e,?),range_label(?,?e);

match case_stmt(?sub,{...,case_clause({...,case_label(?e),...},?),...},?)

begin

ensure_assignment_compatible(e,sub.expr_type);

end;

-- "Case labels are constants and ..."

match case_label(?e) begin

ensure_constant(e);

end;

-- "... no value may occur more than once."

-- NB: Actually building up the sets is dangerous because

-- the sets could be very large (for example -1000...1000)

-- So instead we gather up all the cases and then do checks on them:

type CaseSet := ORDERED_SET[remote CaseLabel]((==),(<<));

match case_stmt(?,?clauses,?) begin

collection labels : CaseSet;
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-- first we flatten the case statement

-- and select only labels without errors

for clauses begin

match Cases${...,case_clause({...,?label,...},?),...} begin

case label begin

match single_label(?) begin

labels :> {label};

end;

match range_label(?e1,?e2) begin

if e1.constant_value > e2.constant_value then

add_error(label,"Empty range");

else

labels :> {label};

endif;

end;

end; -- case label

end;

end; -- for clauses

-- then do a cross check

for labels begin

match {...,single_label(?e1),...,?lab2=single_label(?e2),...}

begin

if e1.constant_value = e2.constant_value then

add_error(lab2,"Duplicate case label");

endif;

end;

match {...,single_label(?e1),...,?lab2=range_label(?e2,?e3),...}

begin

if e1.constant_value >= e2.constant_value and

e1.constant_value <= e3.constant_value then

add_error(lab2,"Includes previous case label");

endif;

end;

match {...,range_label(?e1,?e2),...,?lab2=single_label(?e3),...}

begin

if e3.constant_value >= e1.constant_value and

e3.constant_value <= e2.constant_value then

add_error(lab2,"Included in previous case label");

endif;

end;

match {...,range_label(?e1,?e2),...,?lab2=range_label(?e3,?e4),...}

begin

-- if overlapping, we give an error

if e2.constant_value >= e3.constant_value and

e1.constant_value <= e4.constant_value then

add_error(lab2,"Overlaps previous case label");

endif;

end;

end; -- for

end; -- match case_stmt
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-- Section 9.6: While statements

-- "... the Boolean expression (its guard) ..."

match while_stmt(?guard,...) begin

ensure_assignment_compatible(guard,boolean);

end;

-- Section 9.7: Repeat statements

-- "... a condition specified by a Boolean expression ..."

match repeat_stmt(?,?guard) begin

ensure_assignment_compatible(guard,boolean);

end;

-- Section 9.8: For statements

-- "... while a progression of values is assigned to an integer variable ..."

-- "The statement FOR v := beg TO end BY step DO statements END

-- is equivalent to

-- temp := end; v := beg;

-- IF step > 0 THEN

-- WHILE v <= temp DO statements; v := v + step END

-- ELSE

-- WHILE v >= temp DO statements; v := v + step END

-- END

-- temp has the same type as v, step must be a nonzero constant expression."

-- This equivalence adds the following implied condition:

-- beg, end and step are assignment compatible with v

match for_stmt(?v,?start,?finish,?step,?) begin

ensure_variable(v);

ensure_assignment_compatible(v,longint);

ensure_assignment_compatible(start,v.expr_type);

ensure_assignment_compatible(finish,v.expr_type);

ensure_assignment_compatible(step,v.expr_type);

case step begin

match no_expr() begin end;

else

ensure_constant(step);

case step.constant_value begin

match Constant$some_integer_constant(0) begin

add_error(step,"Cannot step by zero");

end;

end;

end;

end;

-- Section 9.9: Loop statements

-- Section 9.10: return and exit statements
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-- "The type of the expression must be assignment compatible (see App. A)

-- with the result type specified in the procedure heading (see Ch. 10)"

-- NB: proper procedures have no_type which is incidentally the type

-- of no_expr for empty RETURN statements.

attribute Statement.return_procedure : remote Declaration := nil;

match ?p=proc_decl(?,block(?,{...,?stmt,...})) begin

stmt.return_procedure := p;

end;

match ?p:Statement=parent(Statements${...,?c:Statement,...}) begin

c.return_procedure := p.return_procedure;

end;

match ?s=return_stmt(?value) begin

case s.return_procedure begin

match !nil begin

-- Presumably: RETURN is illegal elsewhere (say in a module body)

add_error(s,"RETURN statements must be inside PROCEDUREs");

end;

match proc_decl(header:=header(result:=?rt)) begin

ensure_assignment_compatible(value,rt.base_type);

end;

end;

end;

-- "An exit statement ... specifies termination of the enclosing loop

-- statement..."

-- Presumably EXIT is illegal elsewhere

attribute Statement.exit_loop : remote Statement := nil;

match ?l=loop_stmt({...,?sub,...}) begin

sub.exit_loop := l;

end;

match ?p:Statement=parent(Statements${...,?c:Statement,...}) begin

c.exit_loop := p.exit_loop;

end;

match ?e=exit_stmt(...) begin

if e.exit_loop == nil then

add_error(e,"EXIT statements must nest inside LOOPs");

endif;

end;

-- Section 9.11: With statements

-- "With statements execute a statement sequence depending on the result

-- of a type test and apply a type guard to every occurrence of the tested

-- variable within this statement sequence."

-- NB: WITH has been desugared like IF so we only need to

-- worry about one guard per WITH statement.

-- We require that the type test be applicable:

match with_stmt(?v,named_type(?uT),...) begin

ensure_type_guard_applicable(v,uT);

end;
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-- The fact that an implicit type guard is added throughout the body

-- is already taken care of in module EXPR_TYPE.

-- (actually in discussion on comp.lang.oberon, it seems more like that

-- the variable gets a new type during the body, thus making assignments

-- to possibly unsafe values illegal unless they have type guards too)

--

-- It seems that in the distributed Oberon2 compiler the static type of

-- the variable is temporarily modified while processing the body;

-- this action seems erroneous if the variable is a formal because it

-- makes certain perfectly safe recursive calls illegal.

-- Section 10: Procedure declarations

-- "The body of a function procedure must contain a return statement

-- that defines its result"

match ?p=proc_decl(header(result:=?rt),block(?,?body)) begin

case rt begin

match no_type() begin end;

else -- yes, a function procedure

case body begin

match ancestor(return_stmt(...)) begin end;

else -- no return statement

add_error(p,"No RETURN statement for PROCEDURE");

end;

end;

end;

-- "The formal parameter lists of the forward declaration and actual

-- declaration must match (see App. A)"

match ?d=forward(?h1) begin

case d.forwarding_decls begin

-- NB: case chooses first match, that is the first procedure

-- in the set.

match {...,?p=proc_decl(?h2,?),...} begin

if not headers_match(h1,h2) then

add_error(p,"Does not match forward declaration");

endif;

for x: remote Declaration in d.forwarding_decls begin

if x /== p then

case x begin

match proc_decl(...) begin

add_error(x,"Forward already satisfied");

end;

else

add_error(x,"Redeclaration of forward with non-procedure");

end;

endif;

end;

end;
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else

if not d.is_builtin then -- predefine procedures aren't satisfied

add_error(d,"Forward declaration not satisfied");

for x : remote Declaration in d.forwarding_decls begin

add_error(x,"Redeclaration of forward with non-procedure");

end;

endif;

end;

end;

-- "The result type of a procedure can neither be a record nor an array"

match header(result:=?rt) begin

case rt.base_type begin

match array_type(...) begin

add_error(rt,"Return type of a procedure may not be an array");

end;

match record_type(...) begin

add_error(rt,"Return type of a procedure many not be a record");

end;

end;

end;

-- Section 10.1: Formal parameters

-- different headers for special builtins.

pattern INC_DEC_header(name : IdentDef) : Header

:= header(?name,formals:={var_formal(...),

opt_formal(...)});

pattern NEW_header() : Header

:= header(formals:={?,rest_formal(...)});

-- a pattern matching all types that can be considered strings

var pattern string_type() : Type

:= array_type(?c) if is_char_type(c.base_type),

char_type();

var function is_char_type(c : remote Type) : Boolean begin

case c.base_type begin

match char_type() begin

result := true;

end;

else

result := false;

end;

end;

type TypeBag := BAG[remote Type];

match ?e=funcall(?proc,?actuals)

if not e.is_type_guard -- avoid type guards that look like funcalls

begin

actual_types : TypeBag :=
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{a.expr_type for a : remote Expression in actuals};

case proc.expr_header begin

match !nil begin

add_error(e,"Not a procedure call");

end;

-- check for predefined things with optional parameters

-- INC DEC

match INC_DEC_header(...) and

header(formals:={?fixed,opt_formal(shape:=?opt_type)})

begin

for actuals begin

match {?a,...} begin

ensure_variable(a);

ensure_assignment_compatible(a,longint);

end;

match {?,?opt,...} begin

ensure_assignment_compatible(opt,opt_type.base_type);

end;

match {?,?,?,...} begin

add_error(e,"Too many actual parameters to builtin procedure");

end;

end;

end;

-- LEN ASSERT

match header(formals:={?fixed,opt_formal(shape:=?opt_type)}) begin

for actuals begin

match {?a,...} begin

ensure_actual_compatible(a,fixed);

end;

match {?,?opt,...} begin

ensure_assignment_compatible(opt,opt_type.base_type);

end;

match {?,?,?,...} begin

add_error(e,"Too many actual parameters to builtin procedure");

end;

end;

end;

-- special case for NEW:

match NEW_header() begin

case actuals begin

match {} begin

add_error(e,"Too few parameters to builtin NEW");

end;

-- "NEW(v) [v is] pointer to record or fixed array"

match {?v} begin

ensure_variable(v);

case v.expr_type begin

match pointer_type(record_type(...)) begin end;

match pointer_type(fixed_array_type(...)) begin end;

match pointer_type(open_array_type(...)) begin
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add_error(e,"Need to give dimensions for NEW of open array");

end;

match pointer_type(...) begin end;

match any_type() begin end;

else

add_error(e,"NEW must be given a valid pointer type");

end;

end; -- single argument NEW

-- "NEW(v,x0,...,x1) v: pointer to open array; xi:integer type"

match {?v,...} begin

ensure_variable(v);

case v.expr_type begin

match pointer_type(?o=open_array_type(...)) begin

if o.open_dimensions /= length(actuals)-1 then

add_error(e,"Wrong number of dimensions (expected " ||

o.open_dimensions || ")");

endif;

for actuals begin

match {?,...,?range,...} begin

ensure_assignment_compatible(range,longint);

end;

end;

end;

match pointer_type(...) begin

add_error

(e,"Multi-argument NEW may only be used on open arrays");

end;

match any_type() begin end;

else

add_error(e,"NEW must be given a valid pointer type");

end;

end; -- multiple argument NEW

end; -- case NEW actuals

end; -- match NEW_header

-- now the normal case

match header(formals:=?formals) begin

m : Integer := min(length(formals),length(actuals));

if length(formals) > length(actuals) then

add_error(e,"Too few actual parameters to function (expected " ||

length(formals) || ")");

elsif length(formals) < length(actuals) then

add_error(e,"Too many actual parameters to function (expected " ||

length(formals) || ")");

endif;

for i : Integer in 0..m-1 begin

ensure_actual_compatible(nth(i,actuals),nth(i,formals));

end;

end;

end; -- case header

end; -- match funcall
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-- "Let Tf be the type of a formal parameter f (not an open array) and

-- Ta the type of the corresponding actual parameter a. For

-- variable parameters, Ta must be the same as Tf, or Tf must be a

-- record type and Ta an extension of Tf. For value parameters,

-- a must be assignment compatible with f (see App. A)

-- If Tf in an open array, then a must be array compatible with f"

var procedure ensure_actual_compatible(actual : remote Expression;

formal : remote Declaration)

begin

-- Presumably we check that var actuals are variable

-- even in the case of an open array type:

case formal begin

match var_formal(...) begin

ensure_variable(actual);

end;

end;

-- now the type check:

case formal begin

match formal(?,?shape=open_array_type(...)) begin

if not array_compatible(actual.expr_type,shape.base_type) then

add_error(actual,"not array compatible");

endif;

end;

match var_formal(?,?shape) begin

-- The technical definition of "same" is a little shaky

-- so I'll use the idea of identical base type:

if actual.expr_type.base_type /== shape.base_type and

not record_extends(actual.expr_type.base_type,shape.base_type) then

add_error(actual,"Not compatible with variable formal");

endif;

end;

match value_formal(?,?shape) begin

ensure_assignment_compatible(actual,shape.base_type);

end;

end;

end;

attribute Type.open_dimensions : Integer := 0;

match ?o=open_array_type(?e) begin

o.open_dimensions := e.open_dimensions+1;

end;

-- Section 10.2: Type-bound procedures

-- "Globally declared procedures may be associated with a record type

-- declared in the same module"

attribute Declaration.globally_declared : Boolean := false;

[T :: PHYLA] attribute T.declared_in_module : remote Declaration := nil;

match ?m=module_decl(body:=block({...,?decl,...},?)) begin
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decl.globally_declared := true;

decl.declared_in_module := m;

end;

[phylum P,C :: PHYLA] begin

match ?p:P=parent(?c:C) begin

c.declared_in_module := p.declared_in_module;

end;

end;

[phylum P,C :: PHYLA; SP :: SEQ_PHYLA, SEQUENCE[C]] begin

match ?p:P=parent(SP${...,?c:C,...}) begin

c.declared_in_module := p.declared_in_module;

end;

end;

match ?p=bound_proc_decl(?,?rec=formal(shape:=?shape)) begin

if not p.globally_declared then

add_error(p,"Type-bound procedures must be globally declared");

elsif shape.base_type.declared_in_module /== p.declared_in_module then

add_error(p,"Type-bound procedure declared for external record type");

endif;

-- "The receiver may either be a variable parameter of record type T or

-- a value parameter of type POINTER to T (where T is a record type)."

case rec begin

match var_formal(...) begin

case shape.base_type begin

match record_type(...) begin end;

match any_type() begin end;

else

add_error(p,"Receiver type must be a record type");

end;

end;

match value_formal(...) begin

case shape.base_type begin

match pointer_type(?t1) begin

case t1.base_type begin

match record_type(...) begin end;

match any_type() begin end;

else

add_error(p,"Receiver type must be a pointer to a record");

end;

end;

else

add_error(p,"Receiver type must be a pointer to a record");

end;

end;

end;

end;

-- "... However a procedure P' (with the same name as P) may be explicitly

-- bound to T1 in which case it overrides the binding of P. P' is

-- considered a redefinition of P for T1. The formal parameters of P
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-- P' must match (see App. A). If P and T1 are exported, P' must be

-- exported."

-- The last condition is a little complicated: what if T' = POINTER TO T is

-- exported but not T itself? I will take the condition literally and

-- say then the condition does not apply.

match ?pp=proc_decl(header:=?h1) and bound_proc_decl(?,formal(shape:=?shape))

begin

case pp.overrides begin

match field(...) begin

add_error(pp,"Cannot override field");

end;

match ?p=proc_decl(header:=?h2) begin

if not headers_match(h1,h2) then

add_error(p,"Overriding procedure header does not match");

endif;

case p begin

match bound_proc_decl(identifier(export_info:=exported()),...)

if shape.base_type.type_exported begin

case pp begin

match bound_proc_decl(identifier(export_info:=exported()),...)

begin end;

else

add_error(p,"Overriding procedure must be exported");

end;

end;

end; -- case proc for export info

end; -- overrides a procedure

end;

end;

attribute Type.type_exported : Boolean := false;

match type_decl(identifier(export_info:=exported()),?rt=record_type(...))

begin

rt.type_exported := true;

end;

-- "If r is a receiver parameter declared with type T, r.P^ denotes the

-- (redefined) procedure bound to the base type of T."

-- The parser checks for <expr>.<id>^(...) and generates the "super"

-- fref.

match ?e=fref(?r,?uP,!true) begin

case r begin

match named_expr(?u) begin

case u.use_decl begin

match !nil begin end;

match ?d if d.is_receiver_formal begin end;

else

add_error(r,"Can only fetch redefined procedures for receivers");

end;

end;
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end;

case uP.use_decl begin

match !nil begin end;

match ?p=proc_decl(...) begin

if p.overrides == nil then

add_error(e,"No redefined procedure");

endif;

end;

else

add_error(uP,"Not a procedure");

end;

end;

attribute Declaration.is_receiver_formal : Boolean := true;

match receiver(?f) begin

f.is_receiver_formal := true;

end;

-- "In a forward declaration of type-bound procedure ..."

-- (checked already)

-- Section 11: Modules

-- "A module must not import itself."

-- "... cyclic import of modules is illegal"

-- Both handles already in ob2-symtab (by interfering with the import lookup)

-- Appendix A: Definitions of terms

-- Same Types

-- "Two variables a and b with types Ta and Tb are of the same type if

-- 1. Ta and Tb are both denoted by the same type identifier, or

-- 2. Ta is declared equal Tb in a type declaration of the form Ta = Tb, or

-- 3. a and b appear in the same identifier list in a variable, record

-- field or formal parameter declaration and are not open arrays."

-- The third case is taken care of by the abstract tree generator.

--

-- This definition seems buggy in several ways:

-- 1> It only works for named variables, but the definition requires it

-- to work for generalized variables (for var parameters) or even for

-- expressions (same type is used in several other definitions).

-- For example:

-- type Apples = Integer;

-- var x : Apples;

-- Is x+1 the "same" type as Integer?

--

-- 2> It is not symmetric, rule 2 is one direction only

-- similarly, it is not transitive. I could understand either lack
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-- (except it makes this rather more complex) if the other were

-- there.

--

-- type Apples = Integer;

-- NewApples = Apples;

-- Apples and Integer are the "same type", NewApples and Apples

-- are the "same" type, but NewApples and Integer are not the same type.

-- Neither are Integer and Apples, or Apples and NewApples.

function same_type(t1,t2 : remote Type) : Boolean begin

b1 : remote Type := t1.base_type;

b2 : remote Type := t2.base_type;

result := b1 == b2 or b1 == any or b2 == any;

end;

-- Equal types

-- "Two types T1 and Tb are equal if

-- 1. Ta and Tb are the same type, or

-- 2. Ta and Tb are open array types with equal element types, or

-- 3. Ta and Tb are procedure types whose formal parameter lists match"

function equal_types(t1,t2 : remote Type) : Boolean begin

if same_type(t1,t2) then

result := true;

endif;

case t1 begin

match open_array_type(?et1) begin

case t2 begin

match open_array_type(?et2) begin

result := equal_types(et1,et2);

end;

end;

end;

match proc_type(?h1) begin

case t2 begin

match proc_type(?h2) begin

result := headers_match(h1,h2);

end;

end;

end;

end;

-- otherwise they do not match:

result := false;

end;

-- Type inclusion

-- "Numeric types include (the values of) smaller numeric types

-- according to the following hierarchy."

function type_includes(t1,t2 : remote Type) : Boolean begin

t1_index : Integer := numeric_type_index(t1);

t2_index : Integer := numeric_type_index(t2);
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result := t1_index /= 0 and t2_index /= 0 and t1_index > t2_index;

end;

private function numeric_type_index(t : remote Type) : Integer begin

case t.base_type begin

match !longreal begin result := 5; end;

match !real begin result := 4; end;

match !longint begin result := 3; end;

match !integer begin result := 2; end;

match !shortint begin result := 1; end;

else

result := 0;

end;

end;

-- Type extension

-- "Given a type declaration Tb = RECORD(Ta) ... END, Tb is a direct

-- extension of Ta, and Ta is a direct base type of Tb. A type Tb

-- is an extension of a type Ta (Ta is a base type of Tb) if

-- 1. Ta and Tb are the same types, or

-- 2. Tb is a direct extension of an extension of Ta, [or

-- 3.] If Pa = POINTER to Ta and Pb = POINTER to Tb, Pb is an extension

-- of Pa (Pa ius a base type of Pb) if Tb is an extension of Ta."

-- Most of this was handled by the attribute record_extends, and

-- pointer_extends:

var function type_extends(t1,t2 : remote Type) : Boolean :=

record_extends(t1,t2) or pointer_extends(t1,t2);

-- I don't believe this function is used anywhere.

-- Assignment compatible

-- "An Expression e of type Te is assignment compatible with a variable

-- v of type Tv if one of the following conditions hold:

-- 1. Te and Tv are the same type

-- 2. Te and Tv are numeric types and Tv includes Te

-- 3. Te and Tv are record types and Te is an extension of Tv and the

-- dynamic type of v is Tv.

-- 4. Te and Tv are pointer types and Te is an extension of Tv

-- 5. Tv is a pointer or a procedure type and e is NIL

-- 6. Tv is ARRAY n of CHAR and e is a string constant with m<n chars

-- 7. Tv is a procedure type and e is the name of a [global] procedure whose

-- formal parameters match those of Tv"

var procedure ensure_assignment_compatible(e : remote Expression;

Tv : remote Type)

begin

Te : remote Type := e.expr_type;

if same_type(Te,Tv) or

type_includes(Tv,Te) or

record_extends(Te,Tv) or

pointer_extends(Te,Tv) or

is_pointer_or_proc(Tv) and is_nil(Te) or

string_type_is_big_enough(Tv,e) or
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proc_type_matches_global(Tv,e) then

else

add_error(e,"type mismatch");

endif;

end;

function is_pointer_or_proc(t : remote Type) : Boolean begin

case t begin

match pointer_type(...) begin

result := true;

end;

match proc_type(...) begin

result := true;

end;

else

result := false;

end;

end;

function is_nil(t : remote Type) : Boolean begin

case t begin

match nil_type(...) begin

result := true;

end;

else

result := false;

end;

end;

var function string_type_is_big_enough(Tv : remote Type;

e : remote Expression)

: Boolean := false

begin

case Tv begin

match fixed_array_type(?n,?ct) if is_char_type(ct) begin

case e.constant_value begin

match Constant$string_constant(?s) begin

if Constant$ord(n.constant_value) > length(s) then

result := true;

endif;

end;

end;

end;

end;

end;

var function proc_type_matches_global(Tv : remote Type;

e : remote Expression)

: Boolean := false

begin
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case Tv begin

match proc_type(?h1) begin

result := headers_match(h1,e.expr_header);

end;

end;

end;

-- Appendix A: Array compatible

var function array_compatible(Ta,Tf : remote Type) : Boolean := false

begin

-- "An actual parameter a of type Ta is array compatible with a formal

-- parameter f of type Tf if:

-- 1. Tf and Ta are the same type, or

if same_type(Tf,Ta) then

result := true;

else

case Tf begin

-- 2. Tf is an open array, Ta is any array, and

-- their element types are array compatible or

-- 3. Tf is ARRAY OF CHAR and a is a string."

-- (The third is handled as part of # because strings are

-- considered open arrays of characters in this compiler.)

match open_array_type(?eTf) begin

case Ta begin

match array_type(?eTa) begin

result := array_compatible(eTa,eTf);

end;

end;

end;

end;

endif;

end;

-- Appendix A: "Matching formal parameter lists"

var function headers_match(h1,h2 : remote Header) : Boolean := false

begin

case h1 begin

match header(?,?rec1,?f1,?rt1) begin

case h2 begin

match header(?,?rec2,?f2,?rt2) begin

result :=

-- "Two formal parameter lists match if

-- 1. They have the same number of parameters, and

length(f1) = length(f2) and

-- 2. They have either the same function result type or none

(same_type(rt1,rt2) or no_type_p(rt1) and no_type_p(rt2)) and

-- and

-- 3. parameters at corresponding positions have equal types

(formal_type_equal(nth(i,f1),nth(i,f2))

for i in 0..(length(f1)-1)) and
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-- 4. parameters at corresponding positions are both

-- either value or variable parameters"

(formal_match(nth(i,f1),nth(i,f2))

for i in 0..(length(f1)-1))

-- I used to check eceivers too to ensure

-- forward declarations matched, but this was

-- 1> unnecessary because forwards only look in the same scope

-- 2> wrong because then overriding was impossible

-- REMOVED: and receiver_match(rec1,rec2)

;

end;

end;

end;

end;

end;

function no_type_p(ty : remote Type) : Boolean := false begin

case ty begin

match no_type() begin

result := true;

end;

end;

end;

var function formal_type_equal(f1,f2 : remote Declaration) : Boolean := false

begin

case f1 begin

match formal(?,?t1) begin

case f2 begin

match formal(?,?t2) begin

result := equal_types(t1,t2);

end;

end;

end;

end;

end;

function formal_match(f1,f2 : remote Declaration) : Boolean := false

begin

case f1 begin

match value_formal(...) begin

case f2 begin

match value_formal(...) begin

result := true;

end;

end;

end;

match var_formal(...) begin

case f2 begin

match var_formal(...) begin
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result := true;

end;

end;

end;

end;

end;

var function receiver_match(r1,r2 : remote Receiver) : Boolean := false

begin

case r1 begin

match receiver(?f1) begin

case r2 begin

match receiver(?f2) begin

result := formal_type_equal(f1,f2) and formal_match(f1,f2);

end;

end;

end;

match no_receiver() begin

case r2 begin

match no_receiver() begin

result := true;

end;

end;

end;

end;

end;

end;

B.6 Translation to GCC Trees

The gcc compiler can be used as the optimizing back end of a compiler, for example
Kenner's Ada compiler [61]. Most of the interface in actually procedural rather than in the
form of trees. In order to encapsulate the GCC back end, a full tree language is used. Trees
are then taken apart by an interface program that directs the back end.

B.6.1 A Tree Language for the GCC Back End

-- Front end structure for GCC described in APS

-- This description follows the gist but not the details of the

-- GCC Tree structure. In particular, everything is described in structure,

-- whereas in GCC, procedural interfaces are often used.

-- This description was written with the aid of Richard Kenner's

-- 1995 POPL tutorial on the GCC compiler.

module GCC_TREE[](passed_pointer_size : SmallInteger) begin

pointer_size = passed_pointer_size;

--- Phyla
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phylum CompilationUnit;

phylum Block;

phylum Declaration;

phylum Statement;

phylum TypePhylum;

type Type := remote TypePhylum; -- tree structure not req'd for types.

phylum Expression;

phylum Use;

type Identifier = Symbol;

phylum Declarations := SEQUENCE[Declaration];

phylum Statements := SEQUENCE[Statement];

type Types := LIST[Type]; -- because not tree structured

phylum Expressions := SEQUENCE[Expression];

phylum Fields := SEQUENCE[Declaration];

constructor compilation_unit(d : Declarations) : CompilationUnit;

--- Declarations

constructor no_decl() : Declaration;

constructor label_decl(name : Identifier) : Declaration;

constructor parm_decl(name : Identifier; ty : Type) : Declaration;

constructor const_decl(name : Identifier; ty : Type;

initial : Expression) : Declaration;

constructor var_decl(name : Identifier; ty : Type;

initial : Expression) : Declaration;

constructor field_decl(name : Identifier;

ty : Type;

-- offset is offset in bytes from start of record

-- we do not currently handle bit fields

offset : Expression) : Declaration;

constructor type_decl(name : Identifier; ty : Type) : Declaration;

-- put a name on a result_decl so it can be matched by declaration(...)

constructor named_result_decl(name : Identifier;

ty : Type) : Declaration;

procedure result_decl(ty : Type) : Declaration :=

named_result_decl(result_name,ty);

pattern result_decl(ty : Type) : Declaration :=

named_result_decl(?,?ty);

constructor function_decl(name : Identifier;

ty : Type;

arguments : Declarations;

result : Declaration;
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body : Block) : Declaration;

pattern declaration(name : Identifier) : Declaration

:= label_decl(?name),parm_decl(name:=?name),const_decl(name:=?name),

var_decl(name:=?name),field_decl(name:=?name),type_decl(name:=?name),

named_result_decl(name:=?name),function_decl(name:=?name);

result_name : Identifier := make_symbol("result");

constructor block(decls : Declarations;

stmts : Statements) : Block;

constructor no_block() : Block;

-- every declaration gets a mangled name:

input attribute (d:Declaration).assembler_name : Identifier := decl_name(d);

function decl_name(d : remote Declaration) : Identifier begin

case d begin

match declaration(?name) begin

result := name;

end;

else

result := null_symbol;

end;

end;

-- These should be automatic:

input attribute Declaration.source_file : String := "";

input attribute Declaration.source_line : Integer := 0;

-- flags on declarations:

input attribute Declaration.is_public : Boolean := false;

input attribute Declaration.is_common : Boolean := false;

input attribute Declaration.is_external : Boolean := false;

input attribute Declaration.is_inline : Boolean := false;

-- is_static for var_decls

input attribute Declaration.is_static : Boolean := false;

input attribute Declaration.address_taken : Boolean := false;

--- Use

-- Uses permit cyclic references within the tree:

constructor a_use() : Use;

input attribute Use.use_decl : remote Declaration := nil;

procedure use_remote(d : remote Declaration) : Use begin

result := a_use();

result.use_decl := d;

end;

--- Statement



265

-- In GCC, these are actually handled through procedural interfaces

constructor no_stmt() : Statement;

constructor seq(stmts : Statements) : Statement;

constructor do(expr : Expression) : Statement;

constructor label(decl : Declaration) : Statement;

constructor goto(label_use : Use) : Statement;

constructor cond(expr : Expression;

then_part : Block;

else_part : Block) : Statement;

constructor loop(prologue : Block;

body : Block) : Statement;

constructor continue() : Statement;

constructor exit() : Statement;

constructor return(value : Expression) : Statement;

-- For C switch and other language case statements.

-- The "exitable" field is true if "exit" can exit from a switch.

-- It is true for C switches because "break" breaks a case not the

-- enclosing loop.

constructor switch(expr : Expression;

exitable : Boolean;

body : Block) : Statement;

-- in order to handle C switches, case labels are Statements:

constructor single_case(value : Expression) : Statement;

constructor range_case(min,max : Expression) : Statement;

constructor default_case() : Statement;

constructor block_stmt(b : Block) : Statement;

--- Types

constructor type_use(u : Use) : TypePhylum;

constructor integer(unsigned : Boolean;

precision : SmallInteger) : TypePhylum;

constructor enumeral(precision : SmallInteger;

elements : Declarations) : TypePhylum;

constructor boolean() : TypePhylum;

constructor char() : TypePhylum;

constructor real(precision : SmallInteger) : TypePhylum;

constructor range(min,max : Expression;

base : Type) : TypePhylum;

constructor array(domain : Type; range : Type) : TypePhylum;

constructor record(fields : Fields) : TypePhylum;

constructor union(fields : Fields) : TypePhylum;

-- In a qual_union, the fields are marked with an expression

-- that evaluates to true if the

-- field in the union is present.

constructor qual_union(fields : Fields) : TypePhylum;

constructor complex(base : Type) : TypePhylum;
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constructor pointer(base : Type) : TypePhylum;

constructor reference(base : Type) : TypePhylum;

constructor void() : TypePhylum;

constructor function_type(args : Types; return : Type) : TypePhylum;

-- can be changed: default value is a special boolean type:

input boolean_type : Type := boolean();

-- fixed types that may be useful:

char_type : Type := char();

float_type : Type := real(32);

double_type : Type := real(64);

void_type : Type := void();

pointer_type : Type := pointer(void_type);

-- an offset is the same size as a pointer, but an integer type:

offset_type : Type := integer(true,pointer_size);

string_type : Type := pointer(char_type);

-- cyclic types will cause this to crash:

var function base_type(ty : Type) : Type begin

case ty begin

match type_use(?u) begin

case u.use_decl begin

match type_decl(ty:=?ty2) begin

result := base_type(ty2);

end;

end;

end;

end;

result := ty;

end;

--- Expressions

-- every expression has an expr_type attribute.

-- This type is filled in by default for nodes where the type can be

-- computed easily. Mandatory attribution is mentioned in comments.

input attribute Expression.expr_type : Type := nil;

constructor no_expr() : Expression;

match ?e=no_expr() begin e.expr_type := void_type; end;

-- constants (expr_type for integer_cst is required)

constructor integer_cst(value : Integer) : Expression;

procedure make_integer_cst(value : Integer; ty : Type) : Expression

begin

result := integer_cst(value);

result.expr_type := ty;
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end;

constructor single_real_cst(value : IEEEsingle) : Expression;

constructor double_real_cst(value : IEEEdouble) : Expression;

constructor string_cst(value : String) : Expression;

constructor complex_cst(realpart,imagpart : Expression) : Expression;

match ?e=single_real_cst(?) begin e.expr_type := float_type; end;

match ?e=double_real_cst(?) begin e.expr_type := double_type; end;

match ?e=string_cst(?) begin e.expr_type := string_type; end;

match ?e=complex_cst(?r,?i) begin e.expr_type := complex(r.expr_type); end;

-- uses of declarations

constructor expr_use(u : Use) : Expression;

pattern typed_decl(ty : Type) : Declaration :=

parm_decl(ty:=?ty), const_decl(ty:=?ty), function_decl(ty:=?ty),

var_decl(ty:=?ty), field_decl(ty:=?ty);

attribute Declaration.decl_type : Type := void_type;

match ?d=typed_decl(?ty) begin

d.decl_type := ty;

end;

match ?e=expr_use(?u) begin

e.expr_type := u.use_decl.decl_type;

end;

-- expression of type void

constructor unit() : Expression;

match ?e=unit() begin e.expr_type := void_type; end;

-- storage references

constructor component_ref(object : Expression; field_use : Use) : Expression;

match ?e=component_ref(?,?fu) begin

e.expr_type := fu.use_decl.decl_type;

end;

constructor indirect_ref(pointer : Expression) : Expression;

match ?e=indirect_ref(?p) begin

case base_type(p.expr_type) begin

match pointer(?ty) begin

e.expr_type := ty;

end;

end;

end;

constructor array_ref(array : Expression;

indices : Expressions) : Expression;
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match ?e=array_ref(?a,?) begin

case base_type(a.expr_type) begin

match array(?,?ty) begin

e.expr_type := ty;

end;

end;

end;

-- constructing arrays and records:

-- (expr_type required)

constructor (constructor)(objects : Expressions) : Expression;

-- C's comma operator:

constructor compound(e1,e2 : Expression) : Expression;

match ?e=compound(?,?e2) begin

e.expr_type := e2.expr_type;

end;

-- two types of assignment: regular C assignment

-- and initialization of a variable. (I'm not sure what the second

-- is used for.)

constructor assign(e1,e2 : Expression) : Expression;

modify = assign; -- original name

constructor initialize(u : Use; e : Expression) : Expression;

match ?e=assign(?e1,?) begin

e.expr_type := e1.expr_type;

end;

match ?e=initialize(?,?e1) begin

e.expr_type := e1.expr_type;

end;

-- C's ... ? ... : ... expression

constructor conditional(c : Expression; e1,e2 : Expression) : Expression;

match ?e=conditional(?,?e1,?) begin

e.expr_type := e1.expr_type;

end;

-- function call

constructor call(func : Expression; args : Expressions) : Expression;

match ?e=call(?func,...) begin

case base_type(func.expr_type) begin
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match function_type(?,?rt) begin

e.expr_type := rt;

end;

end;

end;

-- arithmetic operations (operands and result have same type)

constructor plus(e1,e2 : Expression) : Expression;

constructor minus(e1,e2 : Expression) : Expression;

constructor mult(e1,e2 : Expression) : Expression;

-- 4 times of division for integers:

-- (again operands and result have same type)

-- trunc rounds to zero

-- floor to minus infinity

-- ceil to plus infinity

-- round to nearest integer

constructor trunc_div(e1,e2 : Expression) : Expression;

constructor ceil_div(e1,e2 : Expression) : Expression;

constructor floor_div(e1,e2 : Expression) : Expression;

constructor round_div(e1,e2 : Expression) : Expression;

-- the four corresponding remainder operations

constructor trunc_mod(e1,e2 : Expression) : Expression;

constructor ceil_mod(e1,e2 : Expression) : Expression;

constructor floor_mod(e1,e2 : Expression) : Expression;

constructor round_mod(e1,e2 : Expression) : Expression;

-- division for reals or exact division of integers

constructor div(e1,e2 : Expression) : Expression;

rdiv = div;

div_exact = div;

-- conversions to floating point and back (expr_type must

-- always be specified).

-- truncation of reals to integers: (all four methods as for XXX_div)

constructor fix_trunc(e : Expression) : Expression;

constructor fix_ceil(e : Expression) : Expression; -- unimplemented in GCC!

constructor fix_floor(e : Expression) : Expression; -- unimplemented in GCC!

constructor fix_round(e : Expression) : Expression; -- unimplemented in GCC!

-- conversion of integers to floats:

constructor float(e : Expression) : Expression;

-- unary negation (result has same type as operand)

constructor negate(e : Expression) : Expression;

-- builtins

constructor min(e1,e2 : Expression) : Expression;

constructor max(e1,e2 : Expression) : Expression;

constructor abs(e : Expression) : Expression;

constructor ffs(e : Expression) : Expression; -- "find first set bit"
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-- shifting (rsult has same type as first operand)

-- on unsigned integers, it is logical, on signed, arithmetic

constructor lshift(e : Expression; amt : Expression) : Expression;

constructor rshift(e : Expression; amt : Expression) : Expression;

constructor lrotate(e : Expression; amt : Expression) : Expression;

constructor rrotate(e : Expression; amt : Expression) : Expression;

-- bitwise operations (operands and result have same type)

constructor bit_or(e1,e2 : Expression) : Expression;

constructor bit_xor(e1,e2 : Expression) : Expression;

constructor bit_and(e1,e2 : Expression) : Expression;

constructor bit_andtc(e1,e2 : Expression) : Expression; -- unimpl'd in GCC!

constructor bit_not(e : Expression) : Expression;

bit_ior = bit_or; -- standard GCC name

-- boolean combinations in which only nonzeroness is relevant.

-- orif and andif are short-circuiting.

constructor truth_andif(e1,e2 : Expression) : Expression;

constructor truth_orif(e1,e2 : Expression) : Expression;

constructor truth_and(e1,e2 : Expression) : Expression;

constructor truth_or(e1,e2 : Expression) : Expression;

constructor truth_xor(e1,e2 : Expression) : Expression;

constructor truth_not(e : Expression) : Expression;

-- comparisons (all but eq and ne legal only for scalars)

-- type is the language boolean type.

constructor lt(e1,e2 : Expression) : Expression;

constructor le(e1,e2 : Expression) : Expression;

constructor gt(e1,e2 : Expression) : Expression;

constructor ge(e1,e2 : Expression) : Expression;

constructor eq(e1,e2 : Expression) : Expression;

constructor ne(e1,e2 : Expression) : Expression;

pattern binop(e1,e2 : Expression) : Expression :=

plus(?e1,?e2),minus(?e1,?e2),mult(?e1,?e2),div(?e1,?e2),

trunc_div(?e1,?e2),ceil_div(?e1,?e2),

floor_div(?e1,?e2),round_div(?e1,?e2),

trunc_mod(?e1,?e2),ceil_mod(?e1,?e2),

floor_mod(?e1,?e2),round_mod(?e1,?e2),

min(?e1,?e2), max(?e1,?e2),

lshift(?e1,?e2),rshift(?e1,?e2),lrotate(?e1,?e2),rrotate(?e1,?e2),

bit_or(?e1,?e2),bit_xor(?e1,?e2),bit_and(?e1,?e2),bit_andtc(?e1,?e2),

truth_andif(?e1,?e2),truth_orif(?e1,?e2),truth_and(?e1,?e2),

truth_or(?e1,?e2),truth_xor(?e1,?e2);

pattern comparison(e1,e2 : Expression) : Expression :=

lt(?e1,?e2),le(?e1,?e2),gt(?e1,?e2),ge(?e1,?e2),eq(?e1,?e2),ne(?e1,?e2);

pattern unop(e : Expression) : Expression :=

negate(?e),abs(?e),ffs(?e),bit_not(?e),truth_not(?e);
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match ?e=binop(?e1,?) begin

e.expr_type := e1.expr_type;

end;

match ?e=comparison(...) begin

e.expr_type := boolean_type;

end;

match ?e=unop(?e1) begin

e.expr_type := e1.expr_type;

end;

-- represents any (explicit or implicit) type conversion.

-- The expr_type must be given.

constructor convert(e : Expression) : Expression;

procedure make_convert(e : Expression; ty : Type) : Expression

begin

result := convert(e);

result.expr_type := ty;

end;

-- use when no code should be generated:

constructor nop(e : Expression) : Expression;

-- types same but now cannot be used as an lvalue

constructor non_lvalue(e : Expression) : Expression;

-- non_lvalue for pointer or reference types:

-- (This constructor is redundant)

-- constructor reference(e : Expression) : Expression;

-- C's & operator:

constructor address(e : Expression) : Expression;

match ?e=address(?e1) begin

e.expr_type := pointer(e1.expr_type);

end;

-- operators on complex values:

constructor make_complex(real,imag : Expression) : Expression;

constructor conj(e : Expression) : Expression;

constructor realpart(e : Expression) : Expression;

constructor imagpart(e : Expression) : Expression;

match ?e=make_complex(?r,?) begin

e.expr_type := complex(e.expr_type);

end;

match ?e=conj(?e1) begin

e.expr_type := e1.expr_type;
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end;

pattern real_or_imag_part(e : Expression) : Expression :=

realpart(?e), imagpart(?e);

match ?e=real_or_imag_part(?e1) begin

case base_type(e1.expr_type) begin

match complex(?ty) begin

e.expr_type := ty;

end;

end;

end;

-- C's {post-,pre-}{inc,dec}rement operators: ++ and --

constructor predecrement(e : Expression; amt : Expression) : Expression;

constructor preincrement(e : Expression; amt : Expression) : Expression;

constructor postdecrement(e : Expression; amt : Expression) : Expression;

constructor postincrement(e : Expression; amt : Expression) : Expression;

pattern some_crement(e : Expression; amt : Expression) : Expression :=

predecrement(?e,?amt),preincrement(?e,?amt),

postdecrement(?e,?amt),postincrement(?e,?amt);

match ?e=some_crement(?e1,...) begin

e.expr_type := e1.expr_type;

end;

-- remember this expression (in a temporary), it may be get use elsewhere:

constructor save_expr(e : Expression) : Expression;

match ?e1=save_expr(?e2) begin

e1.expr_type := e2.expr_type;

end;

-- reuse an expression

-- (If the object is a save_expr, it will be only evaluated once)

constructor reuse_expr(e : remote Expression) : Expression;

match ?e=reuse_expr(?e1) begin

e.expr_type := e1.expr_type;

end;

end;

B.6.2 Some Runtime-System Additions

module OBERON2_GENERATE_RUNTIME[GccTree :: input GCC_TREE[]] extends GccTree

begin

runtime_compilation_unit : CompilationUnit

:= compilation_unit

(Declarations${type_guard_failed_decl,

array_index_error_decl,
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strcmp_decl,

allocate_decl, -- for NEW

strcpy_decl, -- for COPY

assert_decl});

procedure make_external_function(name : String;

arg_types : Types;

return_type : Type) : Declaration

begin

result := function_decl(make_symbol(name),

function_type(arg_types,return_type),

Declarations${parm_decl(gensym(),ty)

for ty in arg_types},

result_decl(return_type),

no_block());

result.is_public := true;

end;

procedure make_external_var(name : String; ty : Type) : Declaration

begin

result := var_decl(make_symbol(name),ty,no_expr());

result.is_public := true;

end;

--- Builtins:

type_guard_failed_decl : Declaration :=

make_external_function("type_guard_failed",

Types${pointer_type,string_type},

void_type);

array_index_error_decl : Declaration :=

make_external_function("array_index_error",

Types${offset_type,offset_type},

pointer_type);

strcmp_decl : Declaration :=

make_external_function("System_StringCompare",

Types${string_type,string_type},

integer(false,pointer_size));

allocate_decl : Declaration := -- used for NEW

make_external_function("malloc",Types${offset_type},pointer_type);

strcpy_decl : Declaration := -- for COPY

make_external_function("System_StringCopy",

Types${string_type,string_type},

string_type);

-- predefined Oberon2 procedures:
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assert_decl : Declaration :=

make_external_function("ASSERT",Types${boolean(),offset_type},void_type);

end;

B.6.3 Translating Oberon2

-- Convert abstract Oberon2 into the GCC tree language defined in

-- gcc-tree.aps in order to interface to rest of GCC compiler.

module OBERON2_TRANSLATE[T :: var OBERON2_TREE[],

var OBERON2_RESOLVE[T],

var OBERON2_MACHINE_SIZES[],

var OBERON2_COMPILE_COMPUTE[T],

var OBERON2_LAYOUT[T]]

extends T

begin

type BareGccTree := GCC_TREE[](address_size);

type GccTree := OBERON2_GENERATE_RUNTIME[BareGccTree];

attribute Declaration.gcc_decl : GccTree$Declaration;

attribute Declaration.gcc_decls : GccTree$Declarations;

[T :: {Statement,Case,CaseLabel}, var PHYLUM[]] begin

attribute T.gcc_stmt : GccTree$Statement;

pragma source_transfer(gcc_stmt);

end;

attribute Type.gcc_type : GccTree$Type;

-- most types are the same when used in subexpressions,

-- but the rules on open arrays makes arrays special.

-- (and anyway we don't want to be copying huge arrays around in

-- subexpressions, besides, then a[3] := 5 wouldn't work then):

attribute (t : Type).gcc_expr_type : GccTree$Type := t.gcc_type;

attribute Expression.gcc_expr : GccTree$Expression;

attribute Element.gcc_element : GccTree$Expression;

attribute Program.gcc_program : GccTree$CompilationUnit;

pragma source_transfer(gcc_decl,gcc_type,gcc_expr_type,gcc_expr,

gcc_element,gcc_program);

private;

phylum GccDeclarations :: input var SEQUENCE[GccTree$Declaration] :=

GccTree$Declarations;

phylum GccStatements :: input var SEQUENCE[GccTree$Statement] :=

GccTree$Statements;

type GccTypes :: LIST[GccTree$Type] :=

GccTree$Types;

phylum GccExpressions :: input var SEQUENCE[GccTree$Expression] :=

GccTree$Expressions;

phylum GccFields :: input var SEQUENCE[GccTree$Declaration] :=
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GccTree$Fields;

match ?p=program(?modules) begin

p.gcc_program :=

GccTree$compilation_unit

(GccDeclarations${m.gcc_decls...

for m in modules});

end;

ignore_symbol : Symbol := make_symbol("ignore");

function gcc_id(ident : remote IdentDef) : Symbol begin

case ident begin

match identifier(?name,...) begin

result := name;

end;

else

result := ignore_symbol;

end;

end;

-- array expressions carry along their dimensions separately:

type GccRemoteExpressionList := LIST[remote GccTree$Expression];

attribute Expression.gcc_dimensions : GccRemoteExpressionList := {};

-- a paradoxical combination of semantic and syntactic type:

type GccExpressionList := LIST[GccTree$Expression];

-- Similarly: we have to provide access to the object in a method call:

attribute Expression.method_call_object : remote GccTree$Expression;

-- declarations get a mangled name that includes the MODULE.

-- The final assembler name is something like:

-- MODULE_name

attribute Declaration.decl_prefix : String := "";

-- bound procedures get the mangled name: MODULE_type_name

attribute Type.type_prefix : String;

match module_decl(identifier(?sym,...),block(?decls,?)) begin

prefix : String := symbol_name(sym) ++ "_";

for decl in decls begin

decl.decl_prefix := prefix;

end;

end;

--- Declarations

procedure set_decl_info(decl : GccTree$Declaration;

d : remote Declaration) : GccTree$Declaration

begin

result := decl;



276

-- set the assembler name:

case d begin

match bound_proc_decl(identifier(?sym,...),formal(?,?ty)) begin

method_prefix : String := "";

case ty.base_type begin

match pointer_type(?ty) begin

method_prefix := ty.base_type.type_prefix;

end;

match ?ty=record_type(...) begin

method_prefix := ty.type_prefix;

end;

end;

decl.GccTree$assembler_name :=

make_symbol(method_prefix ++ symbol_name(sym));

end;

match declaration(identifier(?sym,...),...) begin

if d.decl_prefix = "" then

decl.GccTree$assembler_name := sym;

else

decl.GccTree$assembler_name :=

make_symbol(d.decl_prefix ++ symbol_name(sym));

endif;

end;

end;

-- is_public:

case d begin

match declaration(identifier(?,not_exported())) begin

decl.GccTree$is_public := false;

end;

else

decl.GccTree$is_public := true;

end;

-- is_external

case d begin

match forward(...) begin

decl.GccTree$is_external := true;

end;

end;

end;

match ?d=module_decl(?id,block(?decls,?stmts)) begin

d.gcc_decl :=

set_decl_info

(GccTree$function_decl

(id.gcc_id,

GccTree$function_type(GccTypes${},GccTree$void_type),

GccDeclarations${},

GccTree$result_decl(GccTree$void_type),

GccTree$block(GccDeclarations${},

GccStatements${stmt.gcc_stmt for stmt in stmts})),
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d);

d.gcc_decls := GccDeclarations$

{decl.gcc_decls... for decl in decls, d.gcc_decl};

end;

match ?d=const_decl(?id,?value) begin

d.gcc_decl :=

set_decl_info(GccTree$const_decl(id.gcc_id,

value.expr_type.gcc_expr_type,

value.gcc_expr),

d);

end;

match ?d=type_decl(?id,?ty) begin

d.gcc_decl := set_decl_info(GccTree$type_decl(id.gcc_id,ty.gcc_type),d);

end;

match ?d=var_decl(?id,?ty) begin

d.gcc_decl := set_decl_info(GccTree$var_decl(id.gcc_id,

ty.gcc_type,

GccTree$no_expr()),

d);

end;

match ?d=forward(?h=header(name:=?id)) begin

d.gcc_decl :=

set_decl_info(GccTree$function_decl(id.gcc_id,

h.gcc_function_type,

h.gcc_arguments,

h.gcc_result_decl,

GccTree$no_block()),

d);

end;

match ?d=proc_decl(?h=header(name:=?id),block(?decls,?stmts))

begin

d.gcc_decl :=

set_decl_info(GccTree$function_decl(id.gcc_id,

h.gcc_function_type,

h.gcc_arguments,

h.gcc_result_decl,

gcc_block),

d);

gcc_block : GccTree$Block := : : :

GccTree$block(GccDeclarations${decl.gcc_decls... for decl in decls},

GccStatements${stmt.gcc_stmt for stmt in stmts});

end;

match ?d=formal(?id,?) begin

d.gcc_decl := GccTree$parm_decl(id.gcc_id,d.formal_gcc_type);
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end;

opt_name : GccTree$Identifier := make_symbol("opt");

match ?d=opt_formal(?ty,?) begin

d.gcc_decl := GccTree$parm_decl(opt_name,ty.gcc_type);

end;

--- Headers

attribute Header.gcc_function_type : GccTree$Type;

attribute Header.gcc_arguments : GccTree$Declarations;

attribute Header.gcc_result_decl : GccTree$Declaration;

match ?h=header(receiver:=?rec,formals:=?formals,result:=?result) begin

-- NB: function_type "owns" the formal and result types

-- but this is not a problem because the corresponding parm_decls

-- and result_decl do not.

-- NB: receiver becomes first argument

h.gcc_function_type :=

GccTree$function_type(GccTypes${rec_gcc_type if bound,

f.formal_gcc_type for f in formals},

result.gcc_type);

h.gcc_arguments := GccDeclarations${rec_gcc_decls... if bound,

f.gcc_decls... for f in formals};

h.gcc_result_decl := GccTree$result_decl(result.gcc_type);

bound : Boolean;

rec_gcc_type : GccTree$Type;

rec_gcc_decls : GccDeclarations;

case rec begin

match receiver(?f) begin

bound := true;

rec_gcc_type := f.formal_gcc_type;

rec_gcc_decls := f.gcc_decls;

end;

else

bound := false;

end;

end;

-- save type around for the header and for the formal declaration:

attribute Declaration.formal_gcc_type : GccTree$Type;

-- formals of OPEN ARRAY type are passed as a vector

-- the first element is a dope vector (copied for value parameters,

-- but the copy does not show up here).

-- (I assume that GCC that handle arrays passed by value,

-- perhaps this assumption is unwarranted. Otherwise I have to use

-- records and fiddle around with fields. A pair type would

-- come in handy).

match ?d=formal(?,?ty=open_array_type(...)) begin
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d.formal_gcc_type := ty.gcc_type;

end;

-- other array types are passed as a pointer to first element:

-- (again value parameters will be copied first, but not here)

match ?d=formal(?,?ty=fixed_array_type(...)) begin

d.formal_gcc_type := ty.gcc_type;

end;

-- otherwise var formals are pointer types

match ?d=var_formal(?,?ty) begin

d.formal_gcc_type := GccTree$pointer(ty.gcc_type);

end;

-- other formals passed by value,

match ?f=value_formal(?,?ty) begin

f.formal_gcc_type := ty.gcc_type;

end;

-- to keep translation happy:

match ?f=opt_formal(?ty,...) begin

f.formal_gcc_type := ty.gcc_type;

f.gcc_decl := GccTree$parm_decl(ignore_symbol,f.formal_gcc_type);

end;

match ?f=rest_formal(?ty) begin

f.formal_gcc_type := ty.gcc_type;

f.gcc_decl := GccTree$parm_decl(ignore_symbol,f.formal_gcc_type);

end;

-- a replacement for GccTree$use_remote that doesn't depend

-- on d.gcc_decl. Note that the second assignment

-- is not required before "result" has a valid value.

var procedure make_use(d : remote Declaration) : GccTree$Use

begin

result := GccTree$a_use();

result.GccTree$use_decl := d.gcc_decl;

end;

--- Type Descriptors

attribute Type.decl_for_type : remote Declaration := nil;

attribute Declaration.type_desc_decl : GccTree$Declaration := nil;

-- like make_use, but for the type descriptor:

-- type_decl's used turn into uses of the type_desc_decl

var procedure make_method_ref(d : remote Declaration) : GccTree$Expression

begin

result := GccTree$address(GccTree$expr_use(u));

u : GccTree$Use := GccTree$a_use();

case d begin

match type_decl(...) begin
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u.GccTree$use_decl := d.type_desc_decl;

end;

else

u.GccTree$use_decl := d.gcc_decl;

end;

end;

var procedure make_method_field(d : remote Declaration) : GccTree$Declaration

begin

index : GccTree$Expression :=

GccTree$make_integer_cst(d.method_index*address_size,

GccTree$offset_type);

case d begin

match type_decl(identifier(?name,...),?) begin

-- break the cycle:

u : GccTree$Use := GccTree$a_use();

u.GccTree$use_decl := d.type_spec_type_decl;

result := GccTree$field_decl(make_symbol(name||"_ref"),

GccTree$pointer(GccTree$type_use(u)),

index);

end;

match proc_decl(?h=header(identifier(?name,...),...),...) begin

result := GccTree$field_decl(make_symbol(name||"_ref"),

GccTree$pointer(h.gcc_function_type),

index);

end;

end;

end;

-- record types are handled specially, because the type descriptor

-- must be generated.

attribute Type.spec_type : GccTree$Type := nil;

attribute Declaration.type_spec_type_decl :remote GccTree$Declaration := nil;

match ?d=type_decl(identifier(?name,...),?t=record_type(...)) begin

t.decl_for_type := d;

d.type_desc_decl := spec_decl;

spec_decl : GccTree$Declaration :=

GccTree$const_decl(gensym(),type_spec_type,init);

spec_decl.GccTree$assembler_name :=

make_symbol(d.decl_prefix ++ symbol_name(name) ++ "_typespec");

spec_decl.GccTree$is_public := true;

type_spec_type : GccTree$Type := GccTree$record

(GccFields$

{GccTree$field_decl

(make_symbol("typespec_size"),

GccTree$offset_type,

GccTree$make_integer_cst(0,GccTree$offset_type)),

make_method_field(m) for m in t.methods});
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spec_type_decl : GccTree$Declaration :=

GccTree$type_decl(gensym(),type_spec_type);

d.type_spec_type_decl := spec_type_decl;

t.spec_type := type_spec_type;

init : GccTree$Expression :=

GccTree$(constructor)

(GccExpressions${spec_size_expr,

make_method_ref(m) for m in t.methods});

init.GccTree$expr_type := type_spec_type;

spec_size_expr : GccTree$Expression :=

GccTree$make_integer_cst(t.desc_size,GccTree$offset_type);

t.type_prefix := d.decl_prefix ++ symbol_name(name) ++ "_";

d.gcc_decls := GccDeclarations${d.gcc_decl,spec_type_decl,spec_decl};

end;

--- Types

match ?t=no_type() begin

t.gcc_type := GccTree$void_type; -- this shouldn't be used....

end;

match ?t=named_type(?u) begin

t.gcc_type := GccTree$type_use(make_use(u.use_decl));

end;

-- multi-dimensional arrays (even ones with open parts)

-- are laid out as a single block of memory.

-- (see note on expressions below...)

match ?t=fixed_array_type(?length,?elemty) begin

case length.constant_value begin

match Constant$some_integer_constant(?v) begin

t.gcc_type := GccTree$array

(GccTree$range(GccTree$make_integer_cst(0,GccTree$offset_type),

GccTree$make_integer_cst(v-1,GccTree$offset_type),

GccTree$offset_type),

elemty.gcc_type);

end;

end;

end;

-- open array's are records, the first first the the dope vector,

-- the remaining fields are the lengths of the dimensions.

attribute Type.open_ranges : Integer := 0;

match ?t=open_array_type(?elemty) begin

-- we don't need to use the base type because
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-- open array types need not be named:

t.open_ranges := 1 + elemty.open_ranges;

t.gcc_type := GccTree$record

(GccFields$

{GccTree$field_decl

(make_symbol("dopevector"),

t.gcc_expr_type, -- GccTree$pointer_type,

GccTree$make_integer_cst(0,GccTree$offset_type)),

GccTree$field_decl

(make_symbol("dim" || i),

GccTree$offset_type,

GccTree$make_integer_cst(i*address_size,

GccTree$offset_type))

for i in 1..t.open_ranges});

end;

-- In expressions,

-- however, the type of an array subexpression is a pointer to

-- the contents (one big vector).

-- The ranges come along separately.

match ?t=array_type(?elemty) begin

case elemty.base_type begin

match ?et=array_type(...) begin

t.gcc_expr_type := et.gcc_expr_type;

end;

match ?et begin

t.gcc_expr_type := GccTree$pointer(et.gcc_type);

end;

end;

end;

phylum DimensionExpr;

constructor dimension_expr() : DimensionExpr;

attribute DimensionExpr.useable_dimensions : GccTree$Expression;

attribute DimensionExpr.reuseable_dimensions : GccRemoteExpressionList;

-- create a dimension expr with a useable useable_dimensions attribute

procedure make_dimension_expr(array_expr : remote GccTree$Expression;

dimension : Integer;

topty : remote Type;

ty : remote Type)

: DimensionExpr

begin

case ty.base_type begin

match ?bt=array_type(?elemty) begin

next : DimensionExpr :=

make_dimension_expr(array_expr,dimension+1,topty,elemty);

result := dimension_expr();

new_expr : GccTree$Expression;

case bt begin

match open_array_type(...) begin
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case topty.base_type.gcc_type begin

match GccTree$record(?fields) begin

new_expr :=

GccTree$save_expr

(GccTree$component_ref

(GccTree$reuse_expr(array_expr),

GccTree$use_remote(nth(dimension+1,fields))));

end;

end;

end;

match ?t=fixed_array_type(?length,?elemty) begin

case length.constant_value begin

match Constant$some_integer_constant(?v) begin

new_expr := GccTree$make_integer_cst(v,GccTree$offset_type);

end;

end;

end;

end; -- case bt

result.useable_dimensions := GccTree$compound(new_expr,

next.useable_dimensions);

result.reuseable_dimensions :=

{new_expr} ++ next.reuseable_dimensions;

end; -- match array_type

else

result := dimension_expr();

result.useable_dimensions := GccTree$no_expr();

result.reuseable_dimensions := {};

end;

end;

-- represent two values:

-- 1> GCC tree of array pointer expression

-- 2> a list of reusable dimensions

phylum ArrayExpr;

constructor array_expr() : ArrayExpr;

attribute ArrayExpr.gcc_array_expr : GccTree$Expression;

attribute ArrayExpr.gcc_array_dimensions : GccRemoteExpressionList;

-- pass in a pointer to the array (fixed) or record (open)

procedure make_array_expr(ty : remote Type;

base : GccTree$Expression) ae : ArrayExpr

begin

ae := array_expr();

case ty begin

match array_type(...) begin

de : DimensionExpr := make_dimension_expr(base,0,ty,ty);

ptr_expr : GccTree$Expression;

case ty begin

match open_array_type(...) begin
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case ty.gcc_type begin

match GccTree$record(?fields) begin

ptr_expr := GccTree$component_ref

(GccTree$reuse_expr(base),

GccTree$use_remote(first(fields)));

end;

end;

end;

else

ptr_expr := GccTree$make_convert(GccTree$reuse_expr(base),

ty.gcc_expr_type);

end;

ae.gcc_array_expr := GccTree$compound

(base,GccTree$compound(de.useable_dimensions,ptr_expr));

ae.gcc_array_dimensions := de.reuseable_dimensions;

end;

else

ae.gcc_array_expr := base;

ae.gcc_array_dimensions := {};

end;

end;

match ?f=field(...) begin

f.gcc_decl := make_gcc_field_decl(f);

-- the decl will go into a sequence of a different type (Fields)

f.gcc_decls := GccDeclarations${};

end;

match ?d:Declaration begin

-- default

d.gcc_decl := GccTree$no_decl();

d.gcc_decls := GccTree$Declarations${d.gcc_decl};

end;

procedure make_gcc_field_decl(f : remote Declaration) : GccTree$Declaration

begin

case f begin

match field(?id,?ty) begin

result := GccTree$field_decl

(id.gcc_id,

ty.gcc_type,

GccTree$make_integer_cst(f.offset,GccTree$offset_type));

end;

end;

end;

type_spec_name : GccTree$Identifier := make_symbol("_type_spec");

attribute Type.type_spec_field : remote GccTree$Declaration := nil;
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match ?t=record_type(?parent,?local_fields) begin

type_spec_field_decl : GccTree$Declaration :=

GccTree$field_decl(type_spec_name,

GccTree$pointer(t.spec_type),

GccTree$make_integer_cst(0,GccTree$offset_type));

t.type_spec_field := type_spec_field_decl;

t.gcc_type := GccTree$record

(GccFields${type_spec_field_decl,

make_gcc_field_decl(f)

for f in parent.base_type.field_list,

f.gcc_decl for f in local_fields});

end;

match ?t=pointer_type(?base) begin

case base begin

-- POINTER is nop for open array types:

match open_array_type(...) begin

t.gcc_type := base.gcc_type;

end;

else

t.gcc_type := GccTree$pointer(base.gcc_type);

end;

end;

match ?t=proc_type(?header) begin

t.gcc_type := header.gcc_function_type;

end;

match ?t=boolean_type() begin

t.gcc_type := GccTree$boolean();

end;

match ?t=char_type() begin

t.gcc_type := GccTree$char_type;

end;

match ?t=shortint_type() begin

t.gcc_type := GccTree$integer(false,shortint_size*byte_bits);

end;

match ?t=integer_type() begin

t.gcc_type := GccTree$integer(false,integer_size*byte_bits);

end;

match ?t=longint_type() begin

t.gcc_type := GccTree$integer(false,longint_size*byte_bits);

end;

match ?t=real_type() begin

t.gcc_type := GccTree$real(real_size*byte_bits);

end;

match ?t=longreal_type() begin

t.gcc_type := GccTree$real(longreal_size*byte_bits);
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end;

match ?t=set_type() begin

t.gcc_type := GccTree$integer(true,set_size*byte_bits);

end;

match ?t=nil_type() begin

t.gcc_type := GccTree$pointer_type;

end;

match ?t=pseudo_type() begin

t.gcc_type := GccTree$pointer_type;

end;

--- Statements

match ?s=assign_stmt(?lhs,?rhs) begin

s.gcc_stmt := GccTree$do

(GccTree$assign

(lhs.gcc_expr,convert_expr(rhs,rhs.gcc_expr,lhs.expr_type)));

end;

match ?s=call_stmt(?call) begin

s.gcc_stmt := GccTree$do(call.gcc_expr);

end;

match ?s=if_stmt(?cond,?ths,?els) begin

s.gcc_stmt := GccTree$cond

(cond.gcc_expr,

GccTree$block(GccDeclarations${},

GccStatements${th.gcc_stmt for th in ths}),

GccTree$block(GccDeclarations${},

GccStatements${el.gcc_stmt for el in els}));

end;

match ?s=case_stmt(?expr,?cases,?default) begin

s.gcc_stmt := GccTree$switch

(expr.gcc_expr,

false, -- EXIT is only for LOOPS

GccTree$block(GccDeclarations${},

GccStatements${c.gcc_stmt for c in cases,

GccTree$default_case(),

(default...).gcc_stmt}));

end;

match ?s=case_clause(?labels,?body) begin

s.gcc_stmt := GccTree$seq

(GccStatements${label.gcc_stmt for label in labels,

stmt.gcc_stmt for stmt in body});

end;
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--!! change to use constant value...

match ?s=single_label(?value) begin

s.gcc_stmt := GccTree$single_case(value.gcc_expr);

end;

match ?s=range_label(?start,?stop) begin

s.gcc_stmt := GccTree$range_case(start.gcc_expr,stop.gcc_expr);

end;

-- WHILE, REPEAT and FOR do not translate in gcc loops

-- so that EXIT can be reserved for LOOP.

match ?s=while_stmt(?expr,?stmts) begin

-- generate a simple sequence:

-- goto LCOND

-- LBODY:

-- body

-- LCOND:

-- if condition goto LBODY

body_label : GccTree$Declaration := GccTree$label_decl(gensym());

cond_label : GccTree$Declaration := GccTree$label_decl(gensym());

s.gcc_stmt := GccTree$seq

(GccStatements$

{GccTree$goto(GccTree$use_remote(cond_label)),

GccTree$label(body_label),

s.gcc_stmt for s in stmts,

GccTree$label(cond_label),

GccTree$cond

(expr.gcc_expr,

GccTree$block(GccDeclarations${},

GccStatements$

{GccTree$goto

(GccTree$use_remote(body_label))}),

GccTree$no_block())});

end;

match ?s=repeat_stmt(?stmts,?expr) begin

-- generate a simpler sequence

-- LBODY:

-- body

-- if !condition goto LBODY

body_label : GccTree$Declaration := GccTree$label_decl(gensym());

s.gcc_stmt := GccTree$seq

(GccStatements$

{GccTree$label(body_label),

s.gcc_stmt for s in stmts,

GccTree$cond

(GccTree$truth_not(expr.gcc_expr),

GccTree$block(GccDeclarations${},

GccStatements$

{GccTree$goto

(GccTree$use_remote(body_label))}),
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GccTree$no_block())});

end;

match ?s=for_stmt(?v=named_expr(?vu=use_name(?)),

?start,?finish,?step,

?stmts) begin

step_value : Integer := 1;

case step.constant_value begin

match Constant$some_integer_constant(?v) begin

step_value := v;

end;

end;

-- generate code for

-- temp := finish; v := start;

-- IF step >0 THEN

-- WHILE v <= temp DO statements; v := v+step END

-- ELSE

-- WHILE v > temp DO statements; v := v+step END

-- END

temp_decl : GccTree$Declaration :=

GccTree$var_decl(make_symbol("temp"),

v.expr_type.gcc_expr_type,

finish.gcc_expr);

step_expr : GccTree$Expression :=

GccTree$make_integer_cst(step_value,v.expr_type.gcc_expr_type);

init_v : GccTree$Statement :=

GccTree$do(GccTree$assign

(v.gcc_expr,

convert_expr(start,start.gcc_expr,v.expr_type)));

-- we cannot reuse v.gcc_expr, so we could copy it, or

-- since we know how it was created, can recreate it:

inc_v : GccTree$Statement :=

GccTree$do

(GccTree$assign

(GccTree$expr_use(GccTree$use_remote(vu.use_decl.gcc_decl)),

GccTree$plus

(GccTree$expr_use(GccTree$use_remote(vu.use_decl.gcc_decl)),

step_expr)));

body_label : GccTree$Declaration := GccTree$label_decl(gensym());

cond_label : GccTree$Declaration := GccTree$label_decl(gensym());

condition : GccTree$Expression;

if step_value > 0 then

condition :=

GccTree$le

(GccTree$expr_use(GccTree$use_remote(vu.use_decl.gcc_decl)),

GccTree$expr_use(GccTree$use_remote(temp_decl)));

else

condition :=

GccTree$le

(GccTree$expr_use(GccTree$use_remote(vu.use_decl.gcc_decl)),

GccTree$expr_use(GccTree$use_remote(temp_decl)));
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endif;

s.gcc_stmt := GccTree$block_stmt

(GccTree$block

(GccDeclarations${temp_decl},

GccStatements$

{init_v,

GccTree$goto(GccTree$use_remote(cond_label)),

GccTree$label(body_label),

s.gcc_stmt for s in stmts,

inc_v,

GccTree$label(cond_label),

GccTree$cond

(condition,

GccTree$block

(GccDeclarations${},

GccStatements$

{GccTree$goto

(GccTree$use_remote(body_label))}),

GccTree$no_block())}));

end;

match ?s=loop_stmt(?stmts) begin

s.gcc_stmt := GccTree$loop

(GccTree$no_block(),

GccTree$block(GccDeclarations${},

GccStatements${s.gcc_stmt for s in stmts}));

end;

match ?s=exit_stmt() begin

s.gcc_stmt := GccTree$exit();

end;

match ?s=with_stmt(?expr,?ty,?body,?rest) begin

s.gcc_stmt := GccTree$cond

(gen_type_test(expr.gcc_expr,ty),

GccTree$block(GccDeclarations${},

GccStatements${stmt.gcc_stmt for stmt in body}),

GccTree$block(GccDeclarations${},

GccStatements${stmt.gcc_stmt for stmt in rest}));

end;

match ?s=return_stmt(?expr) begin

s.gcc_stmt := GccTree$return(expr.gcc_expr);

end;

--- Expressions

shortint_gcc_type : GccTree$Type :=

GccTree$integer(false,shortint_size*byte_bits);

integer_gcc_type : GccTree$Type :=
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GccTree$integer(false,integer_size*byte_bits);

longint_gcc_type : GccTree$Type :=

GccTree$integer(false,longint_size*byte_bits);

set_gcc_type : GccTree$Type :=

GccTree$integer(false,set_size*byte_bits);

procedure gen_constant_value(x : Constant) const : GccTree$Expression begin

case x begin

match Constant$shortint_constant(?v) begin

const := GccTree$integer_cst(v);

const.GccTree$expr_type := shortint_gcc_type;

end;

match Constant$integer_constant(?v) begin

const := GccTree$integer_cst(v);

const.GccTree$expr_type := integer_gcc_type;

end;

match Constant$longint_constant(?v) begin

const := GccTree$integer_cst(v);

const.GccTree$expr_type := longint_gcc_type;

end;

match Constant$real_constant(?v) begin

const := GccTree$single_real_cst(v);

const.GccTree$expr_type := GccTree$float_type;

end;

match Constant$longreal_constant(?v) begin

const := GccTree$double_real_cst(v);

const.GccTree$expr_type := GccTree$double_type;

end;

match Constant$set_constant(?rep) begin

const := GccTree$integer_cst(rep);

const.GccTree$expr_type := set_gcc_type;

end;

match Constant$boolean_constant(?b) begin

v : Integer := 0;

if b then v := 1; endif;

const := GccTree$integer_cst(v);

-- NB: cannot use boolean_type, because it's an input attribute.

const.GccTree$expr_type := GccTree$boolean();

end;

match Constant$char_constant(?v) begin

const := GccTree$integer_cst(char_code(v));

const.GccTree$expr_type := GccTree$char_type;

end;

match Constant$string_constant(?s) begin

const := GccTree$string_cst(s);

end;

match Constant$undefined() begin -- i.e. nil

const := GccTree$integer_cst(0);

const.GccTree$expr_type := GccTree$pointer_type;

end;
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else

-- control should not get here:

pragma break();

-- not a good constant value:

const := GccTree$integer_cst(8888);

const.GccTree$expr_type := GccTree$pointer_type;

end;

end;

-- by default every expression uses its constant value:

match ?e:Expression if e.expr_constant and e.expr_header == nil begin

const : GccTree$Expression := gen_constant_value(e.constant_value);

case e.constant_value begin

match Constant$string_constant(?s) begin

dim : GccTree$Expression :=

GccTree$make_integer_cst(length(s)+1,GccTree$offset_type);

e.gcc_dimensions := {dim};

e.gcc_expr := GccTree$compound(dim,const);

end;

else

e.gcc_expr := const;

end;

end;

match ?e=no_expr() begin

e.gcc_expr := GccTree$no_expr();

end;

-- named expressions can be qualified or Module.var references

-- disguised as fref's:

pattern actual_named_expr(u : Use) : Expression :=

named_expr(?u),

fref(named_expr(?u),?u,!false) if module_decl_p(u.use_decl);

function module_decl_p(x : remote Declaration) : Boolean begin

case x begin

match module_decl(...) begin result := true; end;

else

result := false;

end;

end;

match ?e=actual_named_expr(?u) begin

base : GccTree$Expression := GccTree$expr_use(make_use(u.use_decl));

simple : GccTree$Expression;

case e.expr_type begin

match ?ty=array_type(...) begin

ae : ArrayExpr := make_array_expr(ty,base);

simple := ae.gcc_array_expr;
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e.gcc_dimensions := ae.gcc_array_dimensions;

end;

else

-- var formals need implicit dereferencing:

case u.use_decl begin

match var_formal(...) begin

simple := GccTree$indirect_ref(base);

end;

else

simple := base;

end;

end;

-- We can't put guards on something which is immediately assigned,

-- because the generated code is conditional (unsuitable as an lvalue)

-- and we don't need to anyway since the value is about to be overwritten

-- anyway (and it must be a legal value because of typechecking).

if e.implicitly_guarded and not e.immediately_assigned then

case e.expr_type begin

match pointer_type(?ty) begin

e.gcc_expr := gen_type_guard(GccTree$save_expr(simple),ty.base_type);

end;

else

-- gen_type_guard operates on pointer expressions:

e.gcc_expr := GccTree$indirect_ref

(gen_type_guard(GccTree$save_expr(GccTree$address(simple)),

e.expr_type));

end;

else

e.gcc_expr := simple;

endif;

end;

-- upward pattern matching could handle this without attributes:

attribute Expression.immediately_assigned : Boolean := false;

match assign_stmt(?expr,?) begin

expr.immediately_assigned := true;

end;

match ?e1=actual_type_guard(?e2,?) begin

e2.immediately_assigned := e1.immediately_assigned;

end;

-- arithmetic may involve implicit coercions:

procedure convert_expr(e : remote Expression;

tree : GccTree$Expression;

arg_ty : remote Type) : GccTree$Expression

begin

-- convert to base type first:

ty : remote Type := arg_ty.base_type;
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-- overly zealous application doesn't hurt:

if e.expr_type /= ty then

-- special cases: characters and strings can be coerced into each other

if e.expr_type = char and is_string_type(ty) then

-- if it's a constant character, we turn it into a constant

-- string, otherwise we create an array expression:

case e.constant_value begin

match Constant$char_constant(?c) begin

result := GccTree$string_cst({c});

end;

else

null : GccTree$Expression :=

GccTree$make_integer_cst(0,GccTree$char_type);

constructed_array : GccTree$Expression :=

GccTree$(constructor)(GccExpressions${tree,null});

constructed_array.GccTree$expr_type :=

GccTree$array(GccTree$range

(GccTree$make_integer_cst(0,integer.gcc_type),

GccTree$make_integer_cst(1,integer.gcc_type),

integer.gcc_type),

GccTree$char_type);

result := GccTree$address(constructed_array);

result.GccTree$expr_type := GccTree$string_type;

end;

elsif is_string_type(e.expr_type) and ty = char then

-- again, special case: the string is constant:

case e.constant_value begin

-- don't check here for the string being the right length:

match Constant$string_constant({?c,...}) begin

result := GccTree$make_integer_cst(char_code(c),GccTree$char_type);

end;

else

result := GccTree$indirect_ref(tree);

result.GccTree$expr_type := GccTree$char_type;

end;

else

result := GccTree$convert(tree);

result.GccTree$expr_type := ty.gcc_expr_type;

endif;

else

result := tree;

endif;

end;

function is_string_type(ty : remote Type) : Boolean begin

case ty begin

match !string begin

result := true;

end;

match array_type(?base) begin
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case base.base_type begin

match char_type() begin

result := true;

end;

end;

end;

end;

result := false;

end;

procedure make_component_ref(record : GccTree$Expression;

field : remote Declaration) : GccTree$Expression

begin

result := GccTree$component_ref

(record, -- GccTree$make_convert(record,field.field_record.gcc_type),

GccTree$use_remote(field.gcc_decl));

end;

-- we add conversions for unary operations to avoid disastrous errors

match ?e=unop(log_not(),?arg) begin

e.gcc_expr := GccTree$truth_not(convert_expr(arg,arg.gcc_expr,boolean));

end;

match ?e=unop(plus(),?arg) begin

e.gcc_expr := arg.gcc_expr;

end;

match ?e=unop(minus(),?arg) begin

-- extra work for sets:

if e.expr_type = set then

e.gcc_expr :=

GccTree$bit_not(convert_expr(arg,arg.gcc_expr,e.expr_type));

else

e.gcc_expr :=

GccTree$negate(convert_expr(arg,arg.gcc_expr,e.expr_type));

endif;

end;

match ?e=binop(log_or(),?arg1,?arg2) begin

e.gcc_expr :=

GccTree$truth_orif(convert_expr(arg1,arg1.gcc_expr,boolean),

convert_expr(arg2,arg2.gcc_expr,boolean));

end;

match ?e=binop(log_and(),?arg1,?arg2) begin

e.gcc_expr :=

GccTree$truth_andif(convert_expr(arg1,arg1.gcc_expr,boolean),

convert_expr(arg2,arg2.gcc_expr,boolean));

end;

match ?e=binop(plus(),?arg1,?arg2) begin

-- more extra work for sets (also for minus(), times(), divide())

if e.expr_type = set then
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e.gcc_expr :=

GccTree$bit_or(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

else

e.gcc_expr := GccTree$plus(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

endif;

end;

match ?e=binop(minus(),?arg1,?arg2) begin

if e.expr_type = set then

e.gcc_expr :=

GccTree$bit_andtc(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

else

e.gcc_expr :=

GccTree$minus(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

endif;

end;

match ?e=binop(times(),?arg1,?arg2) begin

if e.expr_type = set then

e.gcc_expr :=

GccTree$bit_and(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

else

e.gcc_expr := GccTree$mult(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

endif;

end;

match ?e=binop(divide(),?arg1,?arg2) begin

if e.expr_type = set then

e.gcc_expr :=

GccTree$bit_xor(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

else

-- In Oberon2 int1/int2 -> real and

-- so both operands may need to be converted:

e.gcc_expr := GccTree$div(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

endif;

end;

match ?e=binop(mod(),?arg1,?arg2) begin

e.gcc_expr :=

GccTree$floor_mod(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));

end;

match ?e=binop(div(),?arg1,?arg2) begin

e.gcc_expr :=

GccTree$floor_div(convert_expr(arg1,arg1.gcc_expr,e.expr_type),

convert_expr(arg2,arg2.gcc_expr,e.expr_type));
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end;

-- comparing strings uses the builtin strcmp function:

procedure make_strcmp_call(arg1,arg2 : Expression) : GccTree$Expression :=

GccTree$call(GccTree$expr_use(GccTree$use_remote(GccTree$strcmp_decl)),

GccExpressions${arg1.gcc_expr,arg2.gcc_expr});

-- with comparisons, we coerce to first argument's type

match ?e=binop(equal(),?a1,?a2) begin

if is_string_type(a1.expr_type) then

e.gcc_expr := GccTree$eq(make_strcmp_call(a1,a2),

GccTree$make_integer_cst(0,longint.gcc_type));

else

e.gcc_expr := GccTree$eq(a1.gcc_expr,

convert_expr(a2,a2.gcc_expr,a1.expr_type));

endif;

end;

match ?e=binop(not_equal(),?a1,?a2) begin

if is_string_type(a1.expr_type) then

e.gcc_expr := GccTree$ne(make_strcmp_call(a1,a2),

GccTree$make_integer_cst(0,longint.gcc_type));

else

e.gcc_expr := GccTree$ne(a1.gcc_expr,

convert_expr(a2,a2.gcc_expr,a1.expr_type));

endif;

end;

-- we may have to add error-prevention code to prevent this from

-- blowing up if there are errors in the code:

match ?e=binop(less(),?a1,?a2) begin

if is_string_type(a1.expr_type) then

e.gcc_expr := GccTree$lt(make_strcmp_call(a1,a2),

GccTree$make_integer_cst(0,longint.gcc_type));

else

e.gcc_expr := GccTree$lt(a1.gcc_expr,

convert_expr(a2,a2.gcc_expr,a1.expr_type));

endif;

end;

match ?e=binop(less_equal(),?a1,?a2) begin

if is_string_type(a1.expr_type) then

e.gcc_expr := GccTree$le(make_strcmp_call(a1,a2),

GccTree$make_integer_cst(0,longint.gcc_type));

else

e.gcc_expr := GccTree$le(a1.gcc_expr,

convert_expr(a2,a2.gcc_expr,a1.expr_type));

endif;

end;

match ?e=binop(greater(),?a1,?a2) begin

if is_string_type(a1.expr_type) then

e.gcc_expr := GccTree$gt(make_strcmp_call(a1,a2),

GccTree$make_integer_cst(0,longint.gcc_type));
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else

e.gcc_expr := GccTree$gt(a1.gcc_expr,

convert_expr(a2,a2.gcc_expr,a1.expr_type));

endif;

end;

match ?e=binop(greater_equal(),?a1,?a2) begin

if is_string_type(a1.expr_type) then

e.gcc_expr := GccTree$gt(make_strcmp_call(a1,a2),

GccTree$make_integer_cst(0,longint.gcc_type));

else

e.gcc_expr := GccTree$ge(a1.gcc_expr,

convert_expr(a2,a2.gcc_expr,a1.expr_type));

endif;

end;

match ?e=binop(in_set(),?x,?s) begin

-- x IN S ==> ((1<<X)&S)!=0

e.gcc_expr :=

GccTree$ne

(GccTree$bit_and(GccTree$lshift(one,

convert_expr(x,x.gcc_expr,shortint)),

convert_expr(s,s.gcc_expr,set)),

zero);

zero : GccTree$Expression := GccTree$make_integer_cst(0,set.gcc_type);

one : GccTree$Expression := GccTree$make_integer_cst(1,set.gcc_type);

end;

-- predefined function procedures:

-- (As long as a return type or variable formal isn't polymorphic,

-- we can implement as procedures (possibly inlined)).

-- constant: MAX, MIN, SIZE

-- polymorphic: ABS, LEN, LONG, SHORT

-- monomorphic: ASH, CAP, CHR, ENTIER, ODD, ORD

--

-- proper procedures:

-- polymorphic: DEC, INC, NEW

-- monomorphic: ASSERT, COPY, EXCL, HALT, INCL

--

-- we have to generate special code for the polymorphic ones,

-- but we have to make sure each is the builtin procedure, not

-- one of the same name that we are generating code for.

match ?e=funcall(?func,?args) begin

h: remote Header := func.expr_header;

case h begin

-- ABS

match header(identifier(!make_symbol("ABS"),...),

result:=abs_type()) begin

case args begin

match {?arg} begin
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e.gcc_expr := GccTree$abs(arg.gcc_expr);

end;

end;

end;

-- LEN

match header(identifier(!make_symbol("LEN"),...),

formals:={?fixed,opt_formal(shape:=?opt_type)}) begin

dim : Integer := 0;

-- only open array expressions are not compile-time computable:

case args begin

match {?,?dim_expr} begin

case dim_expr.constant_value begin

match Constant$some_integer_constant(?v) begin

dim := v;

end;

end;

end;

end;

case args begin

match {?arg,...} begin

e.gcc_expr := GccTree$compound

(arg.gcc_expr,

GccTree$reuse_expr(nth(dim,arg.gcc_dimensions)));

end;

end;

end;

-- LONG

match header(identifier(!make_symbol("LONG"),...),

formals:={value_formal(shape:=long_type())}) begin

case args begin

match {?arg} begin

e.gcc_expr :=

GccTree$make_convert(arg.gcc_expr,e.expr_type.gcc_expr_type);

end;

end;

end;

-- SHORT

match header(identifier(!make_symbol("SHORT"),...),

formals:={value_formal(shape:=short_type())}) begin

case args begin

match {?arg} begin

e.gcc_expr :=

GccTree$make_convert(arg.gcc_expr,e.expr_type.gcc_expr_type);

end;

end;

end;

-- COPY

-- (not polymorphic, but we convert to use strcpy)

-- BUG: this catches all calls to any procedure named COPY.

match header(identifier(!make_symbol("COPY"),...),...) begin
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case args begin

match {?x,?v} begin

e.gcc_expr := GccTree$make_convert

(GccTree$call

(GccTree$expr_use

(GccTree$use_remote(GccTree$strcpy_decl)),

GccTree$Expressions${v.gcc_expr,x.gcc_expr}),

GccTree$void_type);

end;

end;

end;

-- DEC

match header(identifier(!make_symbol("DEC"),...),

formals:={var_formal(...),opt_formal(...)})

begin

case args begin

match {?v} begin

e.gcc_expr := GccTree$predecrement

(v.gcc_expr,

GccTree$make_integer_cst(1,v.expr_type.gcc_expr_type));

end;

match {?v,?amt} begin

e.gcc_expr := GccTree$predecrement

(v.gcc_expr,

GccTree$make_convert(amt.gcc_expr,v.expr_type.gcc_expr_type));

end;

end;

end;

-- INC

match header(identifier(!make_symbol("INC"),...),

formals:={var_formal(...),opt_formal(...)})

begin

case args begin

match {?v} begin

e.gcc_expr := GccTree$preincrement

(v.gcc_expr,

GccTree$make_integer_cst(1,v.expr_type.gcc_expr_type));

end;

match {?v,?amt} begin

e.gcc_expr := GccTree$preincrement

(v.gcc_expr,

GccTree$make_convert(amt.gcc_expr,v.expr_type.gcc_expr_type));

end;

end;

end;

-- NEW

match header(identifier(!make_symbol("NEW"),...),

formals:={?,rest_formal(...)}) begin

case args begin

match {?ptr,...} begin
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size : Integer := 0;

case ptr.expr_type begin

match pointer_type(?ty) begin

size := ty.type_size;

end;

end;

size_args : GccExpressionList :=

{GccTree$save_expr(GccTree$make_convert(arg.gcc_expr,

GccTree$offset_type))

if arg /= ptr

for arg in args};

call : GccTree$Expression := GccTree$call

(GccTree$expr_use(GccTree$use_remote(GccTree$allocate_decl)),

GccExpressions$

{GccTree$mult

(size_args...,

GccTree$make_integer_cst

(size,GccTree$offset_type))});

-- Now we need to initialize the structure (if a RECORD)

-- or set the open array dimensions (if an ARRAY)

case ptr.expr_type begin

match pointer_type(?ty) begin

case ty.base_type begin

match ?rt=record_type(...) begin

assign : GccTree$Expression :=

GccTree$assign(ptr.gcc_expr,call);

e.gcc_expr := GccTree$assign

(GccTree$component_ref

(GccTree$indirect_ref(assign),

GccTree$use_remote(rt.type_spec_field)),

GccTree$make_convert

(GccTree$address

(GccTree$expr_use

(GccTree$use_remote

(rt.decl_for_type

.type_desc_decl))),

GccTree$pointer_type));

end;

match ?at=open_array_type(...) begin

record : GccTree$Expression := GccTree$(constructor)

(GccTree$Expressions$

{call,

GccTree$reuse_expr(size)

for size in size_args});

record.GccTree$expr_type := at.gcc_type;

e.gcc_expr := GccTree$assign

(ptr.gcc_expr,

record);

end;

end; -- case base type
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end;

end; -- case ptr type

end;

end; -- case args

end; -- match NEW

else

-- a regular call or a fetched call:

actuals : GccTree$Expressions;

case h begin

match header(formals:=?formals) begin

actuals := GccExpressions$

{make_actual(arg,arg.gcc_expr,

nth(position(arg,args),formals))

for arg in args,

make_optional_actual(last(formals))

if length(formals) > length(args)};

end;

end;

case h begin

-- an object call:

match header(receiver:=receiver(?)) begin

case func begin

match fref(?obj,?,?) begin

obj_ptr : GccTree$Expression :=

GccTree$reuse_expr(func.method_call_object);

e.gcc_expr :=

GccTree$call(func.gcc_expr,

GccExpressions${obj_ptr,actuals...});

end;

end;

end;

match header(formals:=?formals) begin

-- we may need to distinguish between function pointers and functions

-- but I hope not.

e.gcc_expr := GccTree$call(func.gcc_expr,actuals);

end;

end;

end;

end;

-- Actual Parameters:

--

procedure make_actual(arg : remote Expression;

tree : GccTree$Expression;

formal : remote Declaration) : GccTree$Expression

begin

-- Here's a function to help us detect array types

function is_array_type(ty : remote Type) : Boolean begin

case ty.base_type begin
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match array_type(...) begin result := true; end;

else

result := false;

end;

end;

case formal begin

-- arrays are passed the same whether or not we have a

-- var or value formal.

match formal(?,?ty=open_array_type(?)) begin

result := GccTree$(constructor)

(GccExpressions$

{tree,

GccTree$reuse_expr(nth(i,arg.gcc_dimensions))

for i in 0..(ty.open_ranges-1)});

result.GccTree$expr_type := ty.gcc_type;

end;

-- regular arrays are passed just with the pointer

-- regardless of var/value status:

match formal(?,?ty) if is_array_type(ty) begin

result := tree;

end;

-- other var formals passed by reference:

match var_formal(?,?ty) begin

result := GccTree$address(tree);

end;

-- other value formals passed by value

-- (include large records.), but they must be coerced into

-- the right type:

match value_formal(?,?ty) begin

result := convert_expr(arg,tree,ty);

end;

end;

end;

procedure make_optional_actual(f : remote Declaration) : GccTree$Expression

begin

case f begin

match opt_formal(?,?default) begin

result := gen_constant_value(default);

end;

end;

end;

-- type tests:

-- the first argument is a pointer and the second a (record) type.

-- we have to check out the type descriptor.

-- From ob2-layout.aps:

-- to tell whether a certain dynamic type "td" is or extends statically
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-- known type T, do the following:

-- if ((int)*td >= T.desc_size &&

-- td[T.desc_index] == T) ...

-- But, now I've typed the whole thing with records, and so we do:

-- if (td.typespec_size >= ... &&

-- td.T_ref = &T) ...

procedure gen_type_test(p : GccTree$Expression;

ty : remote Type) : GccTree$Expression begin

spec_field : remote GccTree$Declaration;

case ty.gcc_type begin

match GccTree$record(?fs) begin

spec_field := first(fs);

end;

end;

fields : remote GccFields;

case ty.spec_type begin

match GccTree$record(?fs) begin

fields := fs;

end;

end;

-- perform the cast and then check it:

new_p : GccTree$Expression :=

GccTree$make_convert(p,GccTree$pointer(ty.gcc_type));

td : GccTree$Expression := GccTree$save_expr

(GccTree$component_ref(GccTree$indirect_ref(new_p),

GccTree$use_remote(spec_field)));

result :=

GccTree$truth_andif

(GccTree$ge(GccTree$component_ref(GccTree$indirect_ref(td),

GccTree$use_remote(first(fields))),

GccTree$make_integer_cst(ty.desc_size,

GccTree$offset_type)),

GccTree$eq

(GccTree$component_ref

(GccTree$indirect_ref(GccTree$reuse_expr(td)),

GccTree$use_remote(nth(1+ty.desc_index,fields))),

GccTree$address

(GccTree$expr_use

(GccTree$use_remote(ty.decl_for_type

.type_desc_decl)))));

end;

match ?e=is_test(?e1,named_type(?u)) begin

e.gcc_expr := gen_type_test(e1.gcc_expr,use_base_record_type(u));

end;

-- a type guard is like a type test, but if the test fails,

-- type_guard_failed is called:

procedure gen_type_guard(p : GccTree$Expression;

ty : remote Type) : GccTree$Expression begin



304

case ty.decl_for_type begin

match type_decl(identifier(?name,...),...) begin

result :=

GccTree$conditional

(gen_type_test(p,ty),

GccTree$reuse_expr(p),

-- we have to convert the result back to satisfy the

-- type checker that doesn't know that the function

-- never returns:

GccTree$make_convert

(GccTree$call

(GccTree$expr_use

(GccTree$use_remote(GccTree$type_guard_failed_decl)),

GccExpressions$

{GccTree$make_convert(GccTree$reuse_expr(p),

GccTree$pointer_type),

GccTree$string_cst(symbol_name(name))}),

GccTree$pointer_type));

end;

end;

end;

match ?e=actual_type_guard(?value,?u) begin

e.gcc_expr := gen_type_guard(GccTree$save_expr(value.gcc_expr),

use_base_record_type(u));

end;

function use_base_record_type(u : remote Use) : remote Type begin

case u.use_decl begin

match type_decl(?,?ty) begin

case ty.base_type begin

match ?ty=record_type(...) begin result := ty; end;

match pointer_type(?ty) begin result := ty.base_type; end;

end;

end;

end;

end;

-- arrays:

-- taking a slice of an array is a pointer operation,

-- getting a real element has an indirection in it.

-- This code relies on multiplication of constants being done "smart".

match ?e=aref(?p,?index) begin

array : GccTree$Expression;

array_type : remote Type;

array_dimensions : GccRemoteExpressionList;

case p.expr_type begin

match array_type(...) begin

array := p.gcc_expr;

array_type := p.expr_type;
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array_dimensions := p.gcc_dimensions;

end;

match pointer_type(?rt) begin

array_type := rt.base_type;

ae : ArrayExpr :=

make_array_expr(array_type,GccTree$save_expr(p.gcc_expr));

array := ae.gcc_array_expr;

array_dimensions := ae.gcc_array_dimensions;

end;

end;

max : remote GccTree$Expression := first(array_dimensions);

index_expr : GccTree$Expression := GccTree$save_expr

(GccTree$make_convert(index.gcc_expr,GccTree$offset_type));

-- note array assignment is done by element-to-element copy,

-- (and is only directly supported for strings)

-- and so the element pointer needn't be an lvalue:

element_ptr : GccTree$Expression :=

GccTree$conditional

(GccTree$truth_andif(GccTree$ge(index_expr,

GccTree$make_integer_cst

(0,GccTree$offset_type)),

GccTree$lt(GccTree$reuse_expr(index_expr),

GccTree$reuse_expr(max))),

GccTree$plus

(array,

GccTree$mult

(GccTree$reuse_expr(index_expr),

GccTree$reuse_expr(d)

for d in butfirst(array_dimensions))),

GccTree$make_convert

(GccTree$call

(GccTree$expr_use

(GccTree$use_remote(GccTree$array_index_error_decl)),

GccExpressions$

{GccTree$reuse_expr(index_expr),

GccTree$reuse_expr(max)}),

array_type.gcc_expr_type));

case e.expr_type begin

match array_type(...) begin

e.gcc_expr := element_ptr;

end;

else

e.gcc_expr := GccTree$indirect_ref(element_ptr);

end;

e.gcc_dimensions := butfirst(array_dimensions);

end;
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-- field references are either normal field references or they are

-- method references. In the latter case we have to handle the

-- super flag. In the former case, we have to special case arrays.

-- We must also dereference pointers as necessary.

-- in any case, we should ignore module.var references.

match ?e=fref(?r,?u,?super) begin

obj_ptr : GccTree$Expression;

rec_type : remote Type := nil;

case r.expr_type begin

match record_type(...) begin

obj_ptr := GccTree$address(r.gcc_expr);

rec_type := r.expr_type;

end;

match pointer_type(?rt) begin

obj_ptr := r.gcc_expr;

rec_type := rt.base_type;

end;

end;

case u.use_decl begin

match ?f=field(?,?ty) begin

-- make_array_expr *does* not work for non-arrays.

selection : GccTree$Expression :=

make_component_ref(GccTree$indirect_ref(obj_ptr),f);

case ty.base_type begin

match array_type(...) begin

ae : ArrayExpr := make_array_expr(ty,GccTree$save_expr(selection));

e.gcc_expr := ae.gcc_array_expr;

e.gcc_dimensions := ae.gcc_array_dimensions;

end;

else

e.gcc_expr := selection;

end;

end;

match ?m=proc_decl(header:=?h=header(receiver:=receiver(...))) begin

saved_obj_ptr : GccTree$Expression := GccTree$save_expr(obj_ptr);

record : GccTree$Expression := GccTree$indirect_ref(saved_obj_ptr);

e.method_call_object := saved_obj_ptr;

if super then

-- simple, no dispatching:

case rec_type begin

match record_type(?parent,?) begin

e.gcc_expr :=

GccTree$compound

(record, -- use so that we can reuse later.

GccTree$make_convert

(GccTree$address

(GccTree$expr_use

(GccTree$use_remote

(nth(m.method_index,parent.methods)
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.gcc_decl))),

GccTree$pointer(h.gcc_function_type)));

end;

end;

else

-- dispatching:

td : GccTree$Expression :=

GccTree$component_ref

(record,

GccTree$use_remote(rec_type.type_spec_field));

fields : remote GccFields;

case rec_type.spec_type begin

match GccTree$record(?fs) begin

fields := fs;

end;

end;

e.gcc_expr :=

GccTree$indirect_ref

(GccTree$component_ref

(GccTree$indirect_ref(td),

GccTree$use_remote(nth(1+m.method_index,fields))));

endif;

--e.gcc_expr.GccTree$expr_type := GccTree$pointer(h.gcc_function_type);

end;

else

-- we must have a module reference masquerading as a field reference:

e.gcc_expr := GccTree$expr_use(GccTree$use_remote(u.use_decl.gcc_decl));

end;

end;

match ?e=fetch(?p) begin

case p.expr_type begin

match pointer_type(open_array_type(...)) begin

ae : ArrayExpr := make_array_expr

(e.expr_type,GccTree$save_expr(p.gcc_expr));

e.gcc_expr := ae.gcc_array_expr;

e.gcc_dimensions := ae.gcc_array_dimensions;

end;

else

e.gcc_expr := GccTree$indirect_ref(p.gcc_expr);

end;

end;

gcc_set_type : GccTree$Type := GccTree$integer(true,set_size*byte_bits);

match ?e=set_expr(?elements) begin

e.gcc_expr :=

GccTree$bit_or(e.gcc_element for e in elements,

GccTree$make_integer_cst(0,gcc_set_type));

end;
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match ?e=single_element(?v) begin

e.gcc_element :=

GccTree$lshift(GccTree$make_integer_cst(1,gcc_set_type),

v.gcc_expr);

end;

match ?e=range_element(?e1,?e2) begin

-- {x..y} = (1<<(y+1))-(1<<x)

e.gcc_element := GccTree$minus

(GccTree$lshift

(GccTree$make_integer_cst(1,gcc_set_type),

GccTree$plus(e2.gcc_expr,

GccTree$make_integer_cst(1,gcc_set_type))),

GccTree$lshift(GccTree$make_integer_cst(1,gcc_set_type),e1.gcc_expr));

end;

end;

B.7 Translating GCC Trees to C text

This module creates string for each compilation unit and a string to be written as
the header �le. the semantics of the switch statement nodes in GCC tree form is unclear
and so switch statements are currently not transkated.

module GCC2C[T :: var GCC_TREE[]] extends T

begin

attribute CompilationUnit.program_text : String;

attribute Declaration.is_top_level : Boolean := false;

match ?c=compilation_unit(?decls) begin

c.program_text :=

"/* Automatically generated GCC dialect C code */\n" ||

"/* Generated by the GCC tree to C converted written in APS */\n" ||

"/* John Boyland, 1996 */\n" ||

"#include \"header.h\"\n\n" ||

(decl.text for decl in decls);

for decl in decls begin

decl.is_top_level := true;

end;

end;

var header_text : String :=

"/* Automatically generated GCC dialect C code */\n" ||

"/* Generated by the GCC tree to C converted written in APS */\n" ||

"/* John Boyland, 1996 */\n" ||

type_def_string_part(type_def_string_set...) || "\n" ||
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(extern_decl_texts...);

-- private;

signature HAS_TEXT := {Block,Declaration,Statement,

Type,Expression,Use}, var PHYLUM[];

[T :: HAS_TEXT] attribute T.text : String := "";

attribute Declaration.type_text : String := ""; -- for parm_decl's

function comma(s,base : String) : String

begin

if base = "" then

result := s;

else

result := s || "," || base;

endif;

end;

--- Indentation

signature INDENTING := {Statement, Block, Declaration}, var PHYLUM[];

signature SEQ := {Statements,Declarations,Fields}, var PHYLUM[];

[phylum T :: INDENTING] attribute T.depth : Integer := 0;

function make_indent(i : Integer) : String begin

if i > 0 then

result := " " || make_indent(i-1);

else

result := "";

endif;

end;

[T :: INDENTING] attribute (node:T).indent : String :=

make_indent(node.depth);

---- Saved Expressions

type SavedDeclTexts := LIST[String];

attribute (e:Expression).saved_decl_texts : SavedDeclTexts :=

{c.saved_decl_texts... for c in e.expression_children};

type ExpressionChildren := ORDERED_SET[remote Expression]((==),(<<));

collection attribute Expression.expression_children : ExpressionChildren;

match ?e1:Expression=parent(?e2:Expression) begin

e1.expression_children :> {e2};

end;
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match ?e1:Expression=parent(?children:Expressions) begin

e1.expression_children :> {children...};

end;

match ?e1=save_expr(?e2) begin

sym : Symbol := gensym();

e1.text := symbol_name(sym);

e1.saved_decl_texts := e2.saved_decl_texts ++

{e2.expr_type.tmp_text || " " || sym || " = " || e2.text || ";\n"};

pragma print();

end;

var function tmp_text(ty : Type) : String begin

case ty.base_type begin

match array(?,?et) begin

result := et.text ++ " *";

end;

else

result := ty.text;

end;

end;

function prefix_saved(prefix : String; saved : SavedDeclTexts) : String :=

((prefix ++ s) for s in saved) ++ "";

function block_saved(prefix : String; saved : SavedDeclTexts; stmt : String)

: String

begin

if saved = {} then

result := prefix || stmt;

else

result := prefix || "{\n" || prefix_saved(prefix++" ",saved) ||

" " || prefix || stmt || prefix || "}\n";

endif;

end;

---- Type Def String:

type TypeDefString;

constructor type_def_string(priority : Integer; s : String) : TypeDefString;

function type_def_string_part(tds : TypeDefString) : String begin

case tds begin

match type_def_string(?,?s) begin

result := s;

end;

end;

end;
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function type_def_string_less(tds1,tds2 : TypeDefString) : Boolean

begin

case tds1 begin

match type_def_string(?p1,?s1) begin

case tds2 begin

match type_def_string(?p2,?s2) begin

result := p1 < p2 or p1 = p2 and s1 < s2;

end;

end;

end;

end;

end;

type TypeDefStringSet :=

ORDERED_SET[TypeDefString]((=),type_def_string_less);

var collection type_def_string_set : TypeDefStringSet;

attribute Type.priority : Integer := 0;

---- Extern Declarations

type Strings := BAG[String];

var collection extern_decl_texts : Strings;

---- Declarations

attribute Expression.is_initializer : Boolean := false;

match ?d=parm_decl(?,?ty) begin

d.text := ty.text || " " || d.assembler_name;

d.type_text := ty.text;

end;

match ?d=const_decl(?,?ty,?init) begin

d.text :=

prefix_saved(d.indent,init.saved_decl_texts) ||

d.indent ||

"extern " if d.is_external ||

"static " if (d.is_top_level and not d.is_public) ||

"const " || ty.text || " " || d.assembler_name ||

initial_text || ";\n";

initial_text : String;

if init.text = "" then

initial_text:="";

else
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initial_text := " = " || init.text;

endif;

init.is_initializer := true;

if d.is_top_level and d.is_public and not d.is_external then

extern_decl_texts :>

{"extern const " || ty.text || " " || d.assembler_name || ";\n"};

endif;

end;

match ?d=var_decl(?,?ty,?init) begin

d.text :=

prefix_saved(d.indent,init.saved_decl_texts) ||

d.indent ||

"extern " if d.is_external ||

"static " if (d.is_top_level and not d.is_public) ||

ty.text || " " || d.assembler_name || initial_text || ";\n";

initial_text : String;

if init.text = "" then

initial_text:="";

else

initial_text := " = " || init.text;

endif;

init.is_initializer := true;

if d.is_top_level and d.is_public and not d.is_external then

extern_decl_texts :>

{"extern " || ty.text || " " || d.assembler_name || ";\n"};

endif;

end;

match ?d=field_decl(?,?ty,...) begin

d.text := d.indent || ty.text || " " || d.assembler_name || ";\n";

end;

match ?d=type_decl(?,?ty) begin

-- these types are never used:

d.text := d.indent || "typedef " || ty.text || " " ||

d.assembler_name || "; /* UNUSED */\n";

end;

match ?d=function_decl(?,?,?args,?rd,?body) begin

d.text :=

d.indent ||

"extern " if d.is_external ||

"static " if (d.is_top_level and not d.is_public) ||

rd.text || " " || d.assembler_name || "(" ||

comma(arg.text for arg in args,"") || ")" ||

body_text || "\n";

body_text : String;

if body.text = "" then

body_text := ";";
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else

body_text := body.text;

endif;

if d.is_top_level and d.is_public and not d.is_external then

extern_decl_texts :>

{"extern " || rd.text || " " || d.assembler_name || "(" ||

comma(arg.type_text for arg in args,"") || ");\n"};

endif;

end;

match ?d=result_decl(ty:=?ty) begin

d.text := ty.text;

end;

--- Blocks

match ?b=block(?decls,?stmts) begin

b.text :=

b.indent || "{\n" ||

(decl.text for decl in decls) ||

(stmt.text for stmt in stmts) ||

b.indent || "}\n";

end;

match ?b=no_block() begin

b.text := b.indent || "{}\n";

end;

---- Uses

match ?u=a_use() begin

u.text := symbol_name(u.use_decl.assembler_name);

end;

---- Statements

match ?s=no_stmt() begin

s.text := "";

end;

match ?s=do(?expr) begin

s.text := block_saved(s.indent,expr.saved_decl_texts,

expr.text || ";\n");



314

end;

match ?s=label(?l) begin

s.text := s.indent || l.assembler_name || ":\n";

end;

match ?s=goto(?u) begin

s.text := s.indent || "goto " || u.use_decl.assembler_name || ";\n";

end;

match ?s=cond(?expr,?then_part,?else_part) begin

s.text := block_saved(s.indent,expr.saved_decl_texts,

"if (" || expr.text || ")\n" ||

then_part.text || else_prefix || "else\n" ||

else_part.text);

else_prefix : String := s.indent;

if expr.saved_decl_texts /= {} then

then_part.depth := s.depth+2;

else_part.depth := s.depth+2;

else_prefix := s.indent ++ " ";

endif;

end;

match ?s=loop(?prologue,?body) begin

s.text := prologue.text || s.indent || "for (;;)\n" || body.text;

end;

match ?s=continue() begin

s.text := s.indent || "continue;\n";

end;

match ?s=exit() begin

s.text := s.indent || "exit;\n";

end;

match ?s=return(?expr) begin

if expr.text = "" then

s.text := s.indent ++ "return;\n";

else

s.text := block_saved(s.indent,expr.saved_decl_texts,

"return " ++ expr.text ++ ";\n");

endif;

end;

-- switch and cases omitted because semantics of intermediate

-- form is not clear.
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match ?s=block_stmt(?b) begin

s.text := b.text;

end;

match ?s=seq(?stmts) begin

for s1 in stmts begin

s1.depth := s.depth;

end;

s.text := (stmts...).text || "";

end;

---- Types

match ?ty=type_use(?u) begin

case u.use_decl begin

match type_decl(?,?ty2) begin

ty.priority := ty2.priority;

ty.text := ty2.text;

end;

end;

end;

--!! many machine dependent assumptions

match ?ty=integer(!true,!pointer_size) begin

ty.text := "unsigned long";

end;

match ?ty=integer(!true,?) begin

ty.text := "unsigned";

end;

match ?ty=integer(...) begin

ty.text := "int";

end;

match ?ty=enumeral(?,?elems) begin

ty.text := symbol_name(gensym());

type_def_string_set :>

{type_def_string(0,"typedef enum " || ty.text ||

"{" || comma((elems...).text,"") || "}" ||

ty.text || ";\n")};

end;
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match ?ty=boolean() begin

ty.text := "int";

end;

match ?ty=char() begin

ty.text := "char";

end;

match ?ty=real(!32) begin

ty.text := "float";

end;

match ?ty=real(!64) begin

ty.text := "double";

end;

match ?ty=range(?,?,?base) begin

ty.text := base.text;

end;

match ?ty=array(range(integer_cst(!0),integer_cst(?max),?),?base) begin

ty.priority := base.priority+1;

ty.text := symbol_name(gensym());

type_def_string_set :>

{type_def_string(ty.priority,

"typedef " || base.text || " " || ty.text ||

"[" || (max+1) || "];\n")};

end;

pattern record_or_union(fields : Fields) : TypePhylum :=

record(?fields), union(?fields);

match ?ty=record_or_union(?fields) begin

collection max_priority : Integer :> 0, integer_max;

for field in fields begin

case field begin

match field_decl(?,?fty,...) begin

max_priority :> fty.priority;

end;

end;

end;

ty.priority := max_priority+1;

ty.text := symbol_name(gensym());

for field in fields begin

field.depth := 1;
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end;

end;

match ?ty=record(?fields) begin

type_def_string_set :>

{type_def_string(ty.priority,

"typedef struct " || ty.text || " {\n" ||

(fields...).text || "} " ++ ty.text ++ ";\n")};

end;

match ?ty=union(?fields) begin

type_def_string_set :>

{type_def_string(ty.priority,

"typedef union " || ty.text || " {" ||

(fields...).text || "} " ++ ty.text ++ ";\n")};

end;

match ?ty=complex(?base) begin

ty.text := "__complex__ " || base.text;

ty.priority := base.priority+1;

end;

match ?ty=pointer(?base) begin

case base_type(base) begin

match record(...) begin

ty.text := "struct " ++ base.text ++ " *";

ty.priority := 0;

end;

match union(...) begin

ty.text := "union " ++ base.text ++ " *";

ty.priority := 0;

end;

else

ty.text := base.text || " *";

ty.priority := base.priority+1;

end;

end;

match ?ty=reference(?base) begin

ty.text := base.text || " &";

ty.priority := base.priority+1;

end;

match ?ty=void() begin

ty.text := "void";

end;
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match ?ty=function_type(?args,?return) begin

collection max_priority : Integer :> 0, integer_max;

max_priority :> return.priority;

for arg in args begin

max_priority :> arg.priority;

case arg.base_type begin

match pointer(?ty) begin

-- can't allow "struct T *" before struct T defined.

max_priority :> ty.priority;

end;

end;

end;

ty.priority := 1+max_priority;

ty.text := symbol_name(gensym());

type_def_string_set :>

{type_def_string(ty.priority,

"typedef " || return.text || " " || ty.text || "(" ||

comma((args...).text,"") || ");\n")};

end;

---- Expressions

-- We keep track of expressions that don't do anything

attribute (e:Expression).no_effect : Boolean := false;

-- Saved expressions are always no_effect because

-- the results are computed off line:

match ?e=save_expr(...) begin

e.no_effect := true;

end;

match ?e=no_expr() begin

e.text := "";

e.no_effect := true;

end;

match ?e=integer_cst(?v) begin

e.text := "(" || e.expr_type.text || ")" || v;

e.no_effect := true;

end;

match ?e=single_real_cst(?v) begin

e.text := "(float)" || v;

e.no_effect := true;

end;

match ?e=double_real_cst(?v) begin
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e.text := "(double)" || v;

e.no_effect := true;

end;

function escapify(c : Character) : String begin

case c begin

match !'"' begin

result := "\\\"";

end;

match !'\\' begin

result := "\\\\";

end;

match !'\n' begin

result := "\\n";

end;

else

result := {c};

end;

end;

match ?e=string_cst(?v) begin

e.text := {'"',escapify(c)... for c in v,'"'};

e.no_effect := true;

end;

match ?e=complex_cst(?r,?i) begin

e.text := r.text || "+" || i.text || "i";

e.no_effect := true;

end;

match ?e=expr_use(?u) begin

e.text := u.text;

e.no_effect := true;

end;

match ?e=unit() begin

e.text := "(void)0";

e.no_effect := true;

end;

match ?e=component_ref(?obj,?u) begin

e.text := "(" || obj.text || ")." || u.text;

e.no_effect := obj.no_effect;

end;

match ?e=indirect_ref(?p) begin

e.text := "*(" || p.text || ")";

e.no_effect := p.no_effect;
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end;

match ?e=array_ref(?a,?indices) begin

e.text := "(" || a.text || ")" ||

("[" || i.text || "]" for i in indices);

e.no_effect := a.no_effect and (i.no_effect for i in indices);

end;

match ?e=(constructor)(?objs) begin

ctext : String := "{" || comma(obj.text for obj in objs,"") || "}";

if e.is_initializer then

e.text := ctext;

else

e.text := "(" || e.expr_type.text || ")" || ctext;

endif;

e.no_effect := true and (obj.no_effect for obj in objs);

end;

match ?e=compound(?e1,?e2) begin

if e1.no_effect then

e.text := e2.text;

e.no_effect := e2.no_effect;

elsif e2.text = "" then

e.text := "(void)" || e1.text;

else

e.text := "(" || e1.text || "," || e2.text || ")";

endif;

end;

match ?e=assign(?l,?r) begin

e.text := l.text || "=" || r.text;

end;

match ?e=initialize(?u,?r) begin

e.text := u.text || "=" || r.text;

end;

match ?e=conditional(?c,?e1,?e2) begin

e.text := "(" || c.text || ") ? (" ||

e1.text || ") :( " || e2.text || ")";

end;

match ?e=call(?f,?args) begin

e.text := "(" || f.text || ")(" ||

comma(arg.text for arg in args,"") || ")";

end;
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-- nodes which are directly represented by C's binary operations

pattern c_binop_node(e1,e2 : Expression) : Expression :=

plus(?e1,?e2), minus(?e1,?e2), mult(?e1,?e2), trunc_div(?e1,?e2),

trunc_mod(?e1,?e2), div(?e1,?e2), lshift(?e1,?e2), rshift(?e1,?e2),

bit_or(?e1,?e2), bit_and(?e1,?e2), bit_andtc(?e1,?e2), bit_xor(?e1,?e2),

truth_andif(?e1,?e2), truth_orif(?e1,?e2), truth_xor(?e1,?e2),

lt(?e1,?e2),le(?e1,?e2),gt(?e1,?e2),ge(?e1,?e2),eq(?e1,?e2),ne(?e1,?e2),

make_complex(?e1,?e2),

--!! The following will not work when applied to pointers:

predecrement(?e1,?e2),preincrement(?e1,?e2);

pattern c_unop_node(e : Expression) : Expression :=

address(?e),fix_trunc(?e),negate(?e),bit_not(?e),truth_not(?e),

conj(?e),realpart(?e),imagpart(?e);

function c_op_name(n : remote Expression) : String begin

case n begin

-- binary

match plus(...) begin result := "+"; end;

match minus(...) begin result := "-"; end;

match mult(...) begin result := "*"; end;

match trunc_div(...) begin result := "/"; end;

match trunc_mod(...) begin result := "%"; end;

match div(...) begin result := "/"; end;

match lshift(...) begin result := "<<"; end;

match rshift(...) begin result := ">>"; end;

match bit_or(...) begin result := "|"; end;

match bit_and(...) begin result := "&"; end;

match bit_andtc(...) begin result := "&~"; end;

match bit_xor(...) begin result := "^"; end;

match truth_andif(...) begin result := "&&"; end;

match truth_orif(...) begin result := "||"; end;

match truth_xor(...) begin result := "^^"; end;

match lt(...) begin result := "<"; end;

match le(...) begin result := "<="; end;

match gt(...) begin result := ">"; end;

match ge(...) begin result := ">="; end;

match eq(...) begin result := "=="; end;

match ne(...) begin result := "!="; end;

match complex_cst(...) begin result := "+1i*"; end;

--!! See note above:

match preincrement(...) begin result := "+="; end;

match predecrement(...) begin result := "-="; end;

-- unary

match address(...) begin result := "&"; end;

match fix_trunc(...) begin result := "(long)"; end;

match negate(...) begin result := "-"; end;

match bit_not(...) begin result := "~"; end;

match truth_not(...) begin result := "!"; end;

match conj(...) begin result := "~"; end;
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match realpart(...) begin result := "__real__"; end;

match imagpart(...) begin result := "__imag__"; end;

end;

end;

match ?e=c_binop_node(?e1,?e2) begin

e.text := "(" || e1.text || ")" || c_op_name(e) || "(" || e2.text || ")";

end;

match ?e=c_unop_node(?arg) begin

e.text := c_op_name(e) || "(" || arg.text || ")";

end;

-- we need floor_XXX for the Oberon2 compiler

match ?e=floor_div(?e1,?e2) begin

e.text := "FLOOR_DIV(" || e1.text || "," || e2.text || ")";

end;

match ?e=floor_mod(?e1,?e2) begin

e.text := "FLOOR_MOD(" || e1.text || "," || e2.text || ")";

end;

match ?e=min(?e1,?e2) begin

e.text := "MIN(" || e1.text || "," || e2.text || ")";

end;

match ?e=max(?e1,?e2) begin

e.text := "MAX(" || e1.text || "," || e2.text || ")";

end;

match ?e=abs(?e1) begin

e.text := "ABS(" || e1.text || ")";

end;

-- the other div and truncs are not implemented yet

match ?e=convert(?e1) begin

e.text := "(" || e.expr_type.text || ")(" || e1.text || ")";

e.no_effect := e1.no_effect;

end;

match ?e=reuse_expr(?saved) begin

e.text := saved.text;

e.no_effect := saved.no_effect;

end;

-- default indentation rules

[phylum T,U :: INDENTING] begin

match ?i1:T=parent(?i2:U) begin

i2.depth := i1.depth+1;

end;

end;
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[phylum T,U :: INDENTING; phylum S :: SEQ, SEQUENCE[U]] begin

match ?i1:T=parent(?s:S) begin

for i2 in s begin

i2.depth := i1.depth+1;

end;

end;

end;

end;

B.8 Descriptional Composition

module OBERON2_COMPOSE[Input :: var OBERON2_TREE[],

var OBERON2_RESOLVE[Input],

var OBERON2_MACHINE_SIZES[],

var OBERON2_COMPILE_COMPUTE[Input],

var OBERON2_LAYOUT[Input]]

extends Input

begin

var header_text = TextRep$header_text;

attribute (p:Program).program_text : String :=

p.gcc_program.TextRep$program_text;

private;

inherit OBERON2_TRANSLATE[Input] begin

type BareGccTree = BareGccTree;

type GccTree = GccTree;

gcc_program = gcc_program;

pragma inline(set_decl_info,make_use,make_component_ref,make_strcmp_call);

end;

type TextRep := GCC2C[GccTree];

pragma expand(type BareGccTree,

type GccTree,

type TextRep);

pragma compose(type GccTree$CompilationUnit,

type GccTree$Block,

type GccTree$Declaration,

type GccTree$Statement,

type GccTree$Expression,

type GccTree$Use,

type GccTree$Declarations,

type GccTree$Statements,

type GccTree$Expressions,

type GccTree$Fields);

pragma inline(GccTree$make_external_function,
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GccTree$make_external_var,

GccTree$result_decl,

GccTree$use_remote,

GccTree$make_integer_cst,

GccTree$make_convert);

end;
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Appendix C

The APS Compiler: Name

Resolution and Type Checking

This section contains portions of the source to the APS compiler written in itself.
In particular, it contains a front end that performs name resolution and typechecking.
Additionally it contains a transformation for expanding inherit declarations, as well as
two modules for computing information useful in canonicalizing patterns.

C.1 Abstract Tree

module ABSTRACT_APS[] begin

-- the four basic structures

phylum Signature;

phylum Type;

phylum Expression;

phylum Pattern;

-- two related ones;

phylum Module;

phylum Class;

-- Def's and Use's

phylum Def;

phylum Use;

-- structural phyla

phylum Program;

phylum Unit;

phylum Declaration;

phylum Block;

phylum Match;

phylum Direction;

phylum Default;

-- sequences
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phylum Units:=SEQUENCE[Unit];

phylum Declarations:=SEQUENCE[Declaration];

phylum Matches:=SEQUENCE[Match];

phylum Types:=SEQUENCE[Type];

phylum Expressions:=SEQUENCE[Expression];

phylum Patterns:=SEQUENCE[Pattern];

phylum Actuals:=SEQUENCE[Expression];

phylum TypeActuals:=SEQUENCE[Type];

phylum PatternActuals:=SEQUENCE[Pattern];

signature PHYLA := {Signature,Type,Expression,Pattern,Module,Class,Def,Use,

Program,Unit,Declaration,Block,Match,Direction,Default,

Units,Declarations,Matches,Types,Expressions,Patterns,

Actuals,TypeActuals,PatternActuals}, var PHYLUM[];

-- The identifier _ is used specially.

underscore_symbol : Symbol := make_symbol("_");

constructor program(name : String; units : Units) : Program;

constructor no_unit() : Unit;

constructor with_unit(name : String) : Unit;

constructor decl_unit(decl : Declaration) : Unit;

constructor no_decl() : Declaration;

-- a "begin" ... "end" block.

constructor block(body : Declarations) : Block;

constructor class_decl(def : Def;

type_formals : Declarations;

result_type : Declaration;

parent : Signature;

contents : Block) : Declaration;

constructor module_decl(def : Def;

type_formals : Declarations;

value_formals : Declarations;

result_type : Declaration;

parent : Signature;

contents : Block) : Declaration;

constructor signature_decl(def : Def;

sig : Signature) : Declaration;

constructor phylum_decl(def : Def;

sig : Signature;

(type) : Type) : Declaration;
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constructor type_decl(def : Def;

sig : Signature;

(type) : Type) : Declaration;

constructor value_decl(def : Def;

(type) : Type;

direction : Direction;

default : Default) : Declaration;

constructor attribute_decl(def : Def;

(type) : Type;

direction : Direction;

default : Default) : Declaration;

constructor function_decl(def : Def;

(type) : Type;

body : Block) : Declaration;

constructor procedure_decl(def : Def;

(type) : Type;

body : Block) : Declaration;

constructor constructor_decl(def : Def;

(type) : Type) : Declaration;

constructor pattern_decl(def : Def;

(type) : Type;

choices : Pattern) : Declaration;

constructor inheritance(def : Def;

used : Type;

body : Block) : Declaration;

constructor polymorphic(def : Def;

type_formals : Declarations;

body : Block) : Declaration;

constructor pragma_call(name : Symbol;

parameters : Expressions) : Declaration;

constructor top_level_match(m : Match) : Declaration;

-- replacements can only occur in the body of an inheritance

-- and are renamings to take place in the scope of the inherited module:

-- NB: signature, class and module, replacements aren't implemented yet,

-- it can't be type checked

constructor class_replacement((class) : Class; as : Class) : Declaration;

constructor module_replacement((module) : Module; as : Module) : Declaration;

constructor signature_replacement(sig : Signature; as : Signature)

: Declaration;

constructor type_replacement((type) : Type; as : Type)

: Declaration;

constructor value_replacement(value : Expression; as : Expression)

: Declaration;
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constructor pattern_replacement((pattern) : Pattern; as : Pattern)

: Declaration;

-- renaming can occur anywhere (in inheritance, they particularly useful)

constructor class_renaming(def : Def; old : Class) : Declaration;

constructor module_renaming(def : Def; old : Module) : Declaration;

constructor signature_renaming(def : Def; old : Signature) : Declaration;

constructor type_renaming(def : Def; old : Type) : Declaration;

constructor value_renaming(def : Def; old : Expression) : Declaration;

constructor pattern_renaming(def : Def; old : Pattern) : Declaration;

[phylum T :: {Class,Module,Signature,Type,Expression,Pattern}] begin

pattern replacement(from,as : T) : Declaration :=

class_replacement(?from,?as),module_replacement(?from,?as),

signature_replacement(?from,?as),type_replacement(?from,?as),

value_replacement(?from,?as), pattern_replacement(?from,?as);

pattern renaming(def : Def; old : T) : Declaration :=

class_renaming(?def,?old),module_renaming(?def,?old),

signature_renaming(?def,?old),type_renaming(?def,?old),

value_renaming(?def,?old),pattern_renaming(?def,?old);

pattern some_use(u : Use) : T :=

class_use(?u) :? T, module_use(?u) :? T, sig_use(?u) :? T,

type_use(?u) :? T, value_use(?u) :? T, pattern_use(?u) :? T;

end;

pattern some_replacement() : Declaration :=

class_replacement(?from,?as),module_replacement(?from,?as),

signature_replacement(?from,?as),type_replacement(?from,?as),

value_replacement(?from,?as), pattern_replacement(?from,?as);

pattern some_renaming(def : Def) : Declaration :=

class_renaming(?def,?old),module_renaming(?def,?old),

signature_renaming(?def,?old),type_renaming(?def,?old),

value_renaming(?def,?old),pattern_renaming(?def,?old);

-- directions for attributes

constructor direction(is_input : Boolean;

is_collection : Boolean;

is_circular : Boolean) : Direction;

-- different kinds of Default: a single value or a lattice or nothing

constructor simple(value : Expression) : Default;

constructor composite(initial : Expression;

combiner : Expression) : Default;

-- constructor lattice(bottom : Expression;

-- join : Expression;

-- equal : Expression) : Default;

constructor no_default() : Default;

-- formals:
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constructor normal_formal(def : Def; (type) : Type) : Declaration;

constructor seq_formal(def : Def; (type) : Type) : Declaration;

pattern formal(def : Def; (type) : Type) : Declaration

:= normal_formal(?def,?(type)), seq_formal(?def,?(type));

constructor type_formal(def : Def; sig : Signature) : Declaration;

constructor phylum_formal(def : Def; sig : Signature) : Declaration;

pattern some_type_formal(def : Def; sig : Signature) : Declaration :=

type_formal(?def,?sig),phylum_formal(?def,?sig);

-- definition and use:

constructor def(name : Symbol; is_constant, is_public : Boolean) : Def;

constructor use(name : Symbol) : Use;

constructor qual_use(from : Type; name : Symbol) : Use;

-- a useful pattern:

pattern declaration(def : Def) : Declaration

:= class_decl(?def,...), class_renaming(?def,...),

module_decl(?def,...), module_renaming(?def,...),

signature_decl(?def,...), signature_renaming(?def,...),

phylum_decl(?def,...),

type_decl(?def,...),

type_renaming(?def,...),

type_formal(?def,...),

phylum_formal(?def,...),

pattern_decl(?def,...),

constructor_decl(?def,...),

pattern_renaming(?def,...),

value_decl(?def,...),

attribute_decl(?def,...),

function_decl(?def,...),

procedure_decl(?def,...),

value_renaming(?def,...),

formal(?def,...),

-- inheritance and polymorphic entities are implicitly named

inheritance(?def,...),

polymorphic(?def,...);

pattern some_class_decl(def : Def;

type_formals : Declarations;

result_type : Declaration;

parent : Signature;

contents : Block) : Declaration :=

class_decl(?def,?type_formals,?result_type,?parent,?contents),

module_decl(?def,?type_formals,?,?result_type,?parent,?contents);

pattern some_type_decl(def : Def; sig : Signature; (type) : Type)

: Declaration

:= type_decl(?def,?sig,?(type)), phylum_decl(?def,?sig,?(type));
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-- every type declaration or inherit gets a use attached to it:

pattern type_decl_with_predefined_use(def : Def)

: Declaration

:= type_renaming(?def,...),

some_type_decl(?def,...),

some_type_formal(?def,...),

inheritance(?def,...);

attribute Declaration.predefined_use : Type;

pragma source_transfer(predefined_use);

match ?td=type_decl_with_predefined_use(def(?name,...)) begin

td.predefined_use := type_use(use(name));

end;

--- now various uses (only the simplest ones for now)

constructor class_use(use : Use) : Class;

constructor module_use(use : Use) : Module;

constructor type_use(use : Use) : Type;

constructor type_inst((module) : Module;

type_actuals : TypeActuals;

actuals : Actuals) : Type;

constructor no_type() : Type;

constructor value_use(use : Use) : Expression;

no_value = no_expr;

constructor typed_value(expr : Expression; (type) : Type) : Expression;

constructor sig_use(use : Use) : Signature;

constructor sig_inst(is_input,is_var : Boolean;

(class) : Class;

actuals : TypeActuals) : Signature;

constructor no_sig () : Signature;

constructor pattern_use(use : Use) : Pattern;

constructor no_pattern() : Pattern;

constructor typed_pattern(pat : Pattern; (type) : Type) : Pattern;

-- a list of types: only these type satisfy

constructor fixed_sig(types : Types) : Signature;

-- two signatures:

constructor mult_sig(sig1,sig2 : Signature) : Signature;

-- types have a number of different forms:

constructor remote_type(nodetype : Type) : Type;
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-- constructor void() : Type;

-- constructor internal_list_type(u : Type) : Type;

constructor function_type(formals : Declarations;

return_values : Declarations) : Type;

pattern function_typing(formals : Declarations;

return_type : Type) : Type

:= function_type(?formals,{value_decl((type):=?return_type)});

-- wrapped around type parameters (for easier checking)

-- constructor type_actual((type) : Type) : Type;

constructor private_type(rep : Type) : Type;

-- patterns

constructor match_pattern(pat : Pattern; (type) : Type) : Pattern;

constructor pattern_call(func : Pattern;

actuals : PatternActuals) : Pattern;

-- this is needed for named pattern arguments:

constructor pattern_actual(arg : Pattern;

formal : Expression) : Pattern;

--

-- the sugar pattern, e.g.: {?x,...,?y}

-- to remove and replaced with calls to special patterns

-- constructor sequence_pattern(actuals : Patterns; (type) : Type) : Pattern;

constructor rest_pattern(constraint : Pattern) : Pattern;

-- constructor append_pattern(s1,s2 : Pattern) : Pattern;

-- constructor single_pattern(elem : Pattern) : Pattern;

-- constructor nil_pattern() : Pattern;

constructor choice_pattern(choices : Patterns) : Pattern;

constructor and_pattern(p1,p2 : Pattern) : Pattern;

constructor pattern_var(formal : Declaration) : Pattern;

constructor condition(e : Expression) : Pattern;

constructor hole() : Pattern;

constructor pattern_function(formals : Declarations; body : Pattern) : Pattern;

-- statements

-- a begin ... end statement

constructor block_stmt(body : Block) : Declaration;

constructor effect(e : Expression) : Declaration;

-- procall's are added during a canonicalization

constructor multi_call(proc : Expression;

actuals : Actuals;

results : Actuals) : Declaration;

procall = multi_call; -- old syntax

pattern procall = multi_call; -- old syntax

constructor normal_assign(lhs : Expression; rhs : Expression) : Declaration;

constructor collect_assign(lhs : Expression; rhs : Expression) : Declaration;

pattern assign(lhs : Expression; rhs : Expression) : Declaration :=

normal_assign(?lhs,?rhs),collect_assign(?lhs,?rhs);

-- replaced with value_decl
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-- constructor local_decl(def : Def;

-- direction : Direction;

-- default : Default) : Declaration;

constructor if_stmt(cond : Expression;

if_true : Block;

if_false : Block) : Declaration;

constructor for_in_stmt(formal : Declaration;

seq : Expression;

body : Block) : Declaration;

-- constructor for_on_stmt(formal : Def;

-- seq : Expression;

-- body : Block) : Declaration;

constructor for_stmt(expr : Expression;

matchers : Matches) : Declaration;

constructor case_stmt(expr : Expression;

matchers : Matches;

default : Block) : Declaration;

constructor matcher(pat : Pattern;

body : Block) : Match;

-- expressions

-- (see var_name, too)

constructor integer_const(token : String) : Expression;

constructor real_const(token : String) : Expression;

constructor string_const(token : String) : Expression;

constructor char_const(token : String) : Expression;

constructor undefined() : Expression;

constructor no_expr() : Expression;

constructor funcall(f : Expression; actuals : Actuals) : Expression;

-- these are stuck in in the place of actuals.

-- constructor actual(e : Expression;

-- formal : Expression) : Expression;

-- We use ... syntax now:

-- constructor reduce(f : Expression;

-- elems : Expressions) : Expression;

-- constructor sequence(elems : Expressions; (type) : Type) : Expression;

constructor append(s1,s2 : Expression) : Expression;

-- introduced for empty sequences.

constructor empty() : Expression;

-- sugar: the key returned for this constructor

-- constructor constructor_key(name : Expression) : Expression;

-- the following are only legal in pragma's

constructor class_value(c : Class) : Expression;

constructor module_value(m : Module) : Expression;

constructor signature_value(s : Signature) : Expression;

constructor type_value(t : Type) : Expression;

constructor pattern_value(p : Pattern) : Expression;

-- used in set comprehensions

constructor repeat(expr : Expression) : Expression;



333

constructor guarded(expr : Expression; cond : Expression) : Expression;

constructor controlled(expr : Expression;

formal : Declaration;

set : Expression) : Expression;

end;

C.2 Name Resolution and Environments

Name resolution computes the declaration referred to in each use, and it also
computes the binding of type formals in the scope of the declaration. The bindings are
made explicit in environments. The APS_ENVIRON module de�nes the Environment type.

C.2.1 Symbol Table

-- Creates contours for every declaration context and places every declaration

-- in the proper contour. Lookup isn't handled here.

-- See aps-lookup.

module APS_SYMTAB[Input :: var ABSTRACT_APS[]] extends Input begin

--- Scope Objects:

-- each Contour is an object

phylum Contour;

constructor root_contour(name : Symbol) : Contour;

constructor nested_contour(parent : remote Contour) : Contour;

type Scope := remote Contour;

type Decls := ORDERED_SET[remote Declaration]((==),(<<));

-- Basically all declarations here are at the top-level,

-- but we only find things in files declared with "with" declarations.

type Scopes := SET[Scope]((==));

collection attribute Contour.also_search : Scopes;

collection attribute Contour.value_decls : Decls;

collection attribute Contour.type_decls : Decls;

collection attribute Contour.pattern_decls : Decls;

collection attribute Contour.signature_decls : Decls;

-- a set of polymorphic(...) things in this scope

collection attribute Contour.poly_decls : Decls;

--- Scope Attributes

-- the scope attribute is the lexical scope of a tree node.

-- It is not necessarily the scope that is used to find something

-- (for example in the tree nodes expressing an "inherit" declaration)
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-- These are the nodes where a scope may be placed:

-- (Direction does not appear here)

signature SCOPABLE := {Signature,Type,Expression,Pattern,Class,Module,

Unit,Declaration,Block,Use,

Match,Default}, var PHYLUM[];

[phylum T :: SCOPABLE] attribute T.scope : Scope;

-- The decl_scope is the scope where a declaration is inserted.

-- It differs from "scope" only for declarations inside an inherit

-- or a polymorphic scope.

attribute (d:Declaration).decl_scope : Scope := d.scope;

pattern some_named_signature_decl(name : Symbol) : Declaration

:= class_decl(def(?name,...),...), class_renaming(def(?name,...),...),

signature_decl(def(?name,...),...),

signature_renaming(def(?name,...),...),

module_decl(def(?name,...),...), module_renaming(def(?name,...),...);

pattern some_named_type_decl(name : Symbol) : Declaration

:= module_decl(def(?name,...),...), module_renaming(def(?name,...),...),

phylum_decl(def(?name,...),...),

type_decl(def(?name,...),...),

type_renaming(def(?name,...),...),

type_formal(def(?name,...),...),

phylum_formal(def(?name,...),...);

pattern some_named_pattern_decl(name : Symbol) : Declaration

:= pattern_decl(def(?name,...),...),

constructor_decl(def(?name,...),...),

pattern_renaming(def(?name,...),...);

pattern some_named_value_decl(name : Symbol) : Declaration

:= value_decl(def(?name,...),...),

attribute_decl(def(?name,...),...),

function_decl(def(?name,...),...),

procedure_decl(def(?name,...),...),

constructor_decl(def(?name,...),...),

value_renaming(def(?name,...),...),

formal(def(?name,...),...);

-- this pattern is needlessly non-deterministic, but in

-- a "case" statement, this won't cause problems:

pattern some_named_decl(name : Symbol) : Declaration

:= some_named_signature_decl(?name), some_named_type_decl(?name),

some_named_pattern_decl(?name), some_named_value_decl(?name);

match ?decl=some_named_signature_decl(?name) begin
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if name /= underscore_symbol then

decl.decl_scope.signature_decls :> {decl};

endif;

end;

match ?decl=some_named_type_decl(?name) begin

if name /= underscore_symbol then

decl.decl_scope.type_decls :> {decl};

endif;

end;

match ?decl=some_named_pattern_decl(?name) begin

if name /= underscore_symbol then

decl.decl_scope.pattern_decls :> {decl};

endif;

end;

match ?decl=some_named_value_decl(?name) begin

if name /= underscore_symbol then

decl.decl_scope.value_decls :> {decl};

endif;

end;

-- The root scopes are all the file scopes.

var collection root_scopes : Scopes;

var function find_scope(name : Symbol) : Scope begin

collection found : Scopes;

for root_scopes begin

match {...,?c=root_contour(!name),...} begin

found :> {c};

end;

end;

case found begin

match {?one} begin

result := one;

end;

else

result := nil; -- multiply or not declared

end;

end;

-- find the basic module and put it on the list to search.

var basic_scope : Scope := find_scope(make_symbol("basic"));

-- signature and module declarations have a scope for looking for things:

-- (using the $ syntax). Similarly with polymorphic.

-- (Inheriutance is a little different)

attribute Declaration.saved_contour : Contour;
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pragma source_transfer(saved_contour);

pattern with_saved_contour() : Declaration :=

module_decl(...),signature_decl(...),polymorphic(...),inheritance(...);

-- The following rules all concern propagating the scope attribute

-- through the tree.

match program(?name,?units) begin

new_scope : Scope := root_contour(make_symbol(name));

root_scopes :> {new_scope};

if basic_scope /= nil then

new_scope.also_search :> {basic_scope};

endif;

for u in units begin

u.scope := new_scope;

end;

end;

match ?u=with_unit(?name) begin

wscope : Scope := find_scope(make_symbol(name));

if wscope /= nil then

u.scope.also_search :> {wscope};

endif;

end;

match ?u=decl_unit(?d) begin

d.scope := u.scope;

end;

match ?s=class_decl(type_formals:=?tfs,result_type:=?result,

parent:=?parent,contents:=?contents)

begin

new_scope : Scope := nested_contour(s.scope);

for tf in tfs begin

tf.scope := new_scope;

end;

result.scope := new_scope;

parent.scope := new_scope;

contents.scope := new_scope;

-- the body

body_contour : Contour := nested_contour(new_scope);

case contents begin

match block(?decls) begin

for decl in decls begin

decl.scope := body_contour;

end;

end;

end;

-- we save the scope for later searches:
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s.saved_contour := body_contour;

end;

match ?m=module_decl(type_formals:=?tfs,value_formals:=?vfs,

result_type:=?result,

parent:=?parent,contents:=?contents)

begin

new_scope : Scope := nested_contour(m.scope);

for tf in tfs begin

tf.scope := new_scope;

end;

for vf in vfs begin

vf.scope := new_scope;

end;

parent.scope := new_scope;

result.scope := new_scope;

contents.scope := new_scope;

-- the body

body_contour : Contour := nested_contour(new_scope);

case contents begin

match block(?decls) begin

for decl in decls begin

decl.scope := body_contour;

end;

end;

end;

-- we save the scope for later searches:

m.saved_contour := body_contour;

end;

pattern some_function_decl(ty : Type; body : Block) : Declaration

:= function_decl(?,?ty,?body),procedure_decl(?,?ty,?body);

match ?d=some_function_decl(function_type(?formals,?results),?body) begin

new_scope : Scope := nested_contour(d.scope);

for formal in formals begin

formal.scope := new_scope;

end;

for rd in results begin

rd.scope := new_scope;

end;

body.scope := new_scope;

end;

match ?d=attribute_decl(?,function_type({?formal},{?rd}),default:=?def)

begin

new_scope : Scope := nested_contour(d.scope);

formal.scope := new_scope;

rd.scope := new_scope;

def.scope := new_scope;

end;
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-- pattern definitions are strange because the parameters are

-- not in the scope of the body:

match ?d=pattern_decl(choices:=choice_pattern(?choices))

begin

-- each choice has its own scope:

for choice : Pattern in choices begin

choice.scope := nested_contour(d.scope);

end;

end;

match ?p=polymorphic(?,?tfs,?contents) begin

p.decl_scope.poly_decls :> {p};

-- otherwise, similar to module_decl

type_scope : Scope := nested_contour(p.scope);

for tf in tfs begin

tf.scope := type_scope;

end;

contents.scope := type_scope;

-- the body

body_contour : Contour := nested_contour(type_scope);

case contents begin

match block(?decls) begin

for decl in decls begin

decl.scope := body_contour;

end;

end;

end;

p.saved_contour := body_contour;

end;

match ?i=inheritance(?,?ty,block(?decls)) begin

-- The type is resolved in the outer block:

ty.scope := i.scope;

-- The declarations are bound in the scope of the module

-- (it must be a module) being inherited. The module must

-- also be lexically in scope (not through an extension).

-- This property allows us to do the lookup before the

-- rest of things are looked up:

inherited_scope : Scope;

case ty begin

match type_inst(module_use(use(?name)),...) begin

case lookup_module(name,i.scope) begin

match ?m=module_decl(...) begin

inherited_scope := m.saved_contour;

end;

else

inherited_scope := i.scope;

end;

end;

else
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inherited_scope := i.scope;

end;

i.saved_contour := nested_contour(inherited_scope);

for decl in decls begin

[phylum T :: SCOPABLE,{Signature,Type,Expression,Pattern}]

begin

case decl begin

match replacement(?old:T,?new:T) begin

old.scope := i.saved_contour; -- used to be inherited_scope

new.scope := i.decl_scope;

end;

end;

end;

-- defaults:

decl.decl_scope := i.decl_scope;

decl.scope := i.saved_contour;

end;

end;

-- a lookup function that does the lookup for an inherit and

-- avoids looking at extensions:

var function lookup_module(name : Symbol; scope : Scope) : remote Declaration

begin

case scope.type_decls begin

match {...,?decl=some_named_decl(!name),...} begin

case decl begin

match module_decl(...) begin

result := decl;

end;

else

result := nil; -- can only inherit from modules

end;

end;

else

case scope begin

match nested_contour(?parent_scope) begin

result := lookup_module(name,parent_scope);

end;

else

result := nil;

end;

end;

end;

match ?m=matcher(?pat,?b) begin

new_scope : Scope := nested_contour(m.scope);

pat.scope := new_scope;

b.scope := new_scope;

end;
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-- block gets new scope:

match ?b=block(?decls) begin

new_scope : Scope := nested_contour(b.scope);

for decl in decls begin

decl.scope := new_scope;

end;

end;

-- for loops get new blocks

match ?f=for_in_stmt(?formal,?seq,?body) begin

new_scope : Scope := nested_contour(f.scope);

formal.scope := new_scope;

body.scope := new_scope;

end;

-- function types get a new scope:

match ?ft=function_type(?formals,?rds) begin

new_scope : Scope := nested_contour(ft.scope);

for formal in formals begin

formal.scope := new_scope;

end;

for rd in rds begin

rd.scope := new_scope;

end;

end;

-- bodies of repeat patterns get a new scope:

match ?p=rest_pattern(?body) begin

new_scope : Scope := nested_contour(p.scope);

body.scope := new_scope;

end;

match ?c=controlled(?expr,?formal,?) begin

new_scope : Scope := nested_contour(c.scope);

formal.scope := new_scope;

expr.scope := new_scope;

end;

-- copy scope to predefined_use

match ?td=type_decl_with_predefined_use(...) begin

td.predefined_use.scope := td.scope;

end;

-- now a catch-all cases: copy scope to child:

[phylum T,U::SCOPABLE] match ?p:T=parent(?c:U) begin

c.scope := p.scope;

end;

-- a little sloppy: this should be defined in aps-tree:

signature APS_SEQUENCE :=
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{Units,Declarations,Matches,Types,Expressions,

Patterns,Actuals,TypeActuals,PatternActuals}, var PHYLUM[];

[phylum T,U::SCOPABLE;

L :: APS_SEQUENCE,SEQUENCE[U]] begin

match ?p:T=parent(L${...,?c:U,...}) begin

c.scope := p.scope;

end;

end;

end;

C.2.2 Environments

module APS_ENVIRON[Input :: var ABSTRACT_APS[]]

extends Input

begin

--- The (Type) Environment

type Environment;

-- the decl for a rib is always a module, signature or polymorphic

-- declaration:

pattern rib_decl() : Declaration :=

module_decl(...), class_decl(...), polymorphic(...), function_decl(...);

constructor bound_rib(decl : remote Declaration;

input_cap, var_cap : Boolean;

mapping : EnvironmentMapping;

next : Environment) : Environment;

constructor unbound_rib(decl : remote Declaration;

next : Environment) : Environment;

constructor root_env() : Environment;

pattern some_rib(decl : remote Declaration;

next : Environment) : Environment

:= bound_rib(?decl,next:=?next),unbound_rib(?decl,?next);

pattern some_unbound() : Environment

:= unbound_rib(...), root_env();

empty_env : Environment := root_env();

type ContextualTypes := LIST[ContextualType];

type EnvironmentMapping :=

MAP[remote Declaration, ContextualType](return_no_contextual_type);

function return_no_contextual_type(_ : remote Declaration) : ContextualType

:= no_contextual_type;

no_contextual_type : ContextualType := no_contextual();

environment_mapping = EnvironmentMapping$map;
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pattern environment_mapping = EnvironmentMapping$map;

empty_mapping : EnvironmentMapping := environment_mapping({});

-- a useful type:

-- (see aps-signature.aps)

type Environments := BAG[Environment];

--- The environment attribute:

-- the places where an environment is useful

-- (all nodes excluding Program, Unit, Def, Direction)

signature WITH_ENVIRONMENT :=

{Signature, Type, Expression, Pattern, Use, Block, Declaration,

Match, Default}, var PHYLUM[];

signature WITH_ENVIRONMENT_SEQ :=

{Declarations,Matches,Types,Expressions,Patterns,

TypeActuals,Actuals,PatternActuals}, var PHYLUM[];

[phylum T :: WITH_ENVIRONMENT]

attribute T.environment : Environment := empty_env;

-- special case: the environment for a function decl's type is the

-- outside environment (the information is available outside,

-- and it confuses later steps if there is a superfluous unbound_rib

-- about the type):

match ?d=function_decl((type):=?ty) begin

ty.environment := d.environment;

-- but the return decl is put inside the scope:

case ty begin

match function_type(?,?rds) begin

for rd in rds begin

rd.environment := unbound_rib(d,d.environment);

end;

end;

end;

end;

-- module, signature and polymorphic decls

-- add ribs to the environment

match ?d=rib_decl() begin

new_env : Environment := unbound_rib(d,d.environment);

[phylum CH :: WITH_ENVIRONMENT] begin

for d begin

match parent(?ch:CH) begin

ch.environment := new_env;

end;

end;

end;

[phylum CH :: WITH_ENVIRONMENT;
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L :: SEQUENCE[CH],WITH_ENVIRONMENT_SEQ] begin

for d begin

match parent({...,?ch:CH,...}:L) begin

ch.environment := new_env;

end;

end;

end;

end;

-- the environment is spread to the uses hanging on:

match ?td=type_decl_with_predefined_use(...) begin

td.predefined_use.environment := td.environment;

end;

-- otherwise, just copy from parent to child:

[phylum P,CH :: WITH_ENVIRONMENT] begin

match ?p:P=parent(?ch:CH) begin

ch.environment := p.environment;

end;

end;

[phylum P,CH :: WITH_ENVIRONMENT;

L :: SEQUENCE[CH],WITH_ENVIRONMENT_SEQ] begin

match ?p:P=parent({...,?ch:CH,...}:L) begin

ch.environment := p.environment;

end;

end;

--- Combining environments

function merge_environ(e1,e2 : Environment) : Environment begin

case e1 begin

-- only bound environments change the environment being merged:

match bound_rib(?decl1,?i1,?v1,?,?next1) begin

case e2 begin

match bound_rib(?decl2,?i2,?v2,?mapping2,?next2) begin

result :=

bound_rib(decl2, i1 and i2, v1 and v2,

merge_environment_mapping(e1,mapping2),

merge_environ(e1,next2));

end;

match unbound_rib(!decl1,?) begin

result := e1;

end;

match unbound_rib(?,?) begin

result := merge_environ(next1,e2);

end;

else

-- e2 is root_env(), nothing can happen to it.

result := e2;
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end;

end; -- match

else

-- otherwise e1 has no effect:

result := e2;

end; -- case e1

end;

function merge_environment_mapping(e : Environment;

m : EnvironmentMapping)

: EnvironmentMapping

begin

case m begin

match environment_mapping(?pairs) begin

result := environment_mapping({merge_pair(p) for p in pairs});

end;

end;

function merge_pair(p : EnvironmentMapping$PairType)

: EnvironmentMapping$PairType

begin

case p begin

match (=>)(?from,?to) begin

result := from=>merge_contextual(e,to);

end;

end;

end;

end;

pragma no_memo(merge_environment_mapping);

function apply_environ(e : Environment;

decl : remote Declaration) : ContextualType

begin

-- trying looking up the decl in the environment

case e begin

match bound_rib(mapping:=?mapping) begin

result := EnvironmentMapping$apply(mapping,decl);

end;

else

result := no_contextual_type;

end;

end;

--- Contextualized things

-- one for each phylum that can be contextualized (and found!)

module CONTEXTUAL[BaseType :: BASIC[]](default : BaseType) :: BASIC[] begin

constructor contextual(environ : Environment;
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base : BaseType) : Result;

constructor no_contextual() : Result;

constructor bad_contextual(message : String) : Result;

default_base = default;

-- functions

function contextual_base(x : Result) : BaseType begin

case x begin

match contextual(?,?base) begin

result := base;

end;

else

result := default_base;

end;

end;

function contextual_environ(x : Result) : Environment begin

case x begin

match contextual(?environ,?) begin

result := environ;

end;

else

result := empty_env;

end;

end;

end;

[BaseType; T :: CONTEXTUAL[BaseType]] begin

contextual = T$contextual;

no_contextual = T$no_contextual;

bad_contextual = T$bad_contextual;

pattern contextual = T$contextual;

pattern no_contextual = T$no_contextual;

pattern bad_contextual = T$bad_contextual;

contextual_base = T$contextual_base;

contextual_environ = T$contextual_environ;

end;

[BaseType; T :: CONTEXTUAL[BaseType]] begin

function merge_contextual(env : Environment; x : T) : T begin

case x begin

match contextual(?sub,?base) begin

result := contextual(merge_environ(env,sub),base);

end;

else

result := x;

end;

end;

end;

-- contextual declarations must always have as invariant

-- outerrib.decl = decl.parent or
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-- env = empty_env() and at_top_level(decl)

type ContextualDeclaration := CONTEXTUAL[remote Declaration](nil);

type ContextualType := CONTEXTUAL[remote Type](nil);

type ContextualSignature := CONTEXTUAL[remote Signature](nil);

[BaseType :: WITH_ENVIRONMENT; T :: CONTEXTUAL[BaseType]] begin

var function contextualize(base : BaseType) : T begin

if base == nil then

result := no_contextual();

else

result := contextual(base.environment,base);

endif;

end;

end;

function add_result_to_environment(ct : ContextualType;

env : Environment) : Environment

begin

case env begin

match bound_rib(?cd=some_class_decl(result_type:=?rd),?i,?v,

environment_mapping(?pairs),?next)

begin

result :=

bound_rib(cd,i,v,environment_mapping({rd=>ct,pairs...}),next);

end;

end;

end;

end;

-- used primarily as a signature,

-- but used as a module for modules that do transformations

module APS_BOUND[Input :: var ABSTRACT_APS[], var APS_ENVIRON[Input]]

extends Input

begin

input attribute Use.contextual_def : ContextualDeclaration :=

no_contextual();

input attribute Declaration.depends_on_self : Boolean := false;

end;

C.2.3 Name Resolution

Name resolution needs to use the signatures for each type in the problem used to
fetch services (including implicit fetching through the extension of a module). But signature
determination requires that name resolution be carried out. Thus signature determination
(which requires type determination) is inseparable with name resolution. Furthermore, to
prevent name resolution from getting into in�nite loops, we need to detect types de�ned in
terms of themselves. For example, name resolution of a service fetched from a type such as
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Bad should not cause the compiler to go into in�nite recursion:

type Bad = Bad;

Thus name resolution requires that cycles be detected in declarations which likewise name
resolution. Again the cycle detection module is inseparable with name resolution.

-- This module resolves name references.

-- It also defines an attribute "resolve_error" that

-- contains a string (nil if no error).

-- Note, in order to give a noncircular semantics to APS,

-- it is necessary to perform all regular lookup before any $ qualified

-- lookup and all $ qualified lookup must be doable in parallel.

-- Therefore, scopes (used for qualified lookup) are never inferred

-- for qualified types, modules and signatures.

module APS_RESOLVE[Input :: var ABSTRACT_APS[], var APS_PATTERN[Input],

var APS_SYMTAB[Input],

var APS_ENVIRON[Input],

var APS_PREDEFINED[Input]]

extends Input

begin

attribute Use.resolve_error : String;

-- each use gets a preliminary definition,

-- to be fixed up by APS_TYPECHECK

attribute Use.pre_contextual_def : ContextualDeclaration;

-- possible error messages for module extensions:

attribute Declaration.extension_error : String := "";

-- we look up each formal of a pattern_decl in each choice

-- (But do not generate error messages if not found)

type DeclList := LIST[remote Declaration];

attribute Pattern.pattern_formals : DeclList := {};

private;

attribute Contour.inherited_environment : Environment := empty_env;

-- We treat the inheritance declaration as a type declaration to hold the

-- result of the inheritance. Since it will be possible to refer to this

-- declaration through renamings, it must behave like any other type

-- declaration too. (See other modules.)

-- We make a special bound_rib that records type replacements

-- too.

match ?i=inheritance(?,?ty=type_inst(...),block(?decls)) begin

case type_inst_env(ty) begin

match bound_rib(?md,mapping:=environment_mapping(?previous),next:=?next)

begin

collection replacement_pairs : EnvironmentMapping$BaseType;
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for decl in decls begin

case decl begin

match type_replacement(?from=type_use(use(?name)),?as) begin

case lookup_locally(name,type_namespace(),md.saved_contour,true)

begin

match {contextual(some_unbound(...),?decl)} begin

replacement_pairs :> {decl=>contextualize(as)};

end;

end;

end;

end;

end;

i.saved_contour.inherited_environment :=

bound_rib(md,true,true,

environment_mapping(previous\/replacement_pairs),next);

end;

end;

end;

--- Name Resolution:

-- Name resolution happens in two passes, one for unqualified

-- lookup and one for qualified lookup.

attribute Use.unqualified_contextual_def : ContextualDeclaration;

not_found : ContextualDeclaration := no_contextual();

duplicate_find : ContextualDeclaration := bad_contextual("ambiguous");

not_input : ContextualDeclaration := bad_contextual("type fixed");

not_var : ContextualDeclaration := bad_contextual("type unfinished");

attribute Use.namespace : Namespace;

type Namespace;

constructor signature_namespace() : Namespace;

constructor type_namespace() : Namespace;

constructor pattern_namespace() : Namespace;

constructor value_namespace() : Namespace;

match class_use(?use) begin

use.namespace := signature_namespace();

end;

match sig_use(?use) begin

use.namespace := signature_namespace();

end;

match module_use(?use) begin

use.namespace := type_namespace();

end;

match type_use(?use) begin

use.namespace := type_namespace();
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end;

match value_use(?use) begin

use.namespace := value_namespace();

end;

match pattern_use(?use) begin

use.namespace := pattern_namespace();

end;

-- for efficiency, the lookup for the predefined uses are done by hand:

match ?td=type_decl_with_predefined_use(...) begin

case td.predefined_use begin

match type_use(?u) begin

u.unqualified_contextual_def := contextual(td.environment,td);

u.pre_contextual_def := contextual(td.environment,td);

end;

end;

end;

match ?use=qual_use(?inst,?name) begin

-- force the default here:

use.unqualified_contextual_def := not_found;

if inst.scopes = {} then

use.pre_contextual_def := not_found;

use.resolve_error := "Type has no signature";

else

find : ContextualDeclaration :=

lookup_in_environments(name,use.namespace,inst.scopes);

use.pre_contextual_def := find;

endif;

end;

-- don't bother trying to lookup pattern formal names:

match pattern_actual(?,value_use(?u)) begin

u.unqualified_contextual_def := not_found;

u.pre_contextual_def := not_found;

u.resolve_error := "";

end;

-- don't bother looking up '_'

match ?use=use(!underscore_symbol) begin

use.pre_contextual_def := not_found;

use.unqualified_contextual_def := not_found;

use.resolve_error := "";

end;

-- normal lookup

match ?use=use(?name) begin

find : ContextualDeclaration := lookup_in_scope(name,use.namespace,

use.scope,true);

use.pre_contextual_def := find;
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use.unqualified_contextual_def := find;

end;

match ?u:Use begin

case u.pre_contextual_def begin

match !not_found begin

u.resolve_error := "not found";

end;

match bad_contextual(?reason) begin

u.resolve_error := reason;

end;

else

u.resolve_error := "";

end;

end;

--- Lookup

type ContextualDeclarations := BAG[ContextualDeclaration];

-- take a name and try to find it in the scope, return

-- a contextualized entity.

-- (There's an added complication for merging in the

-- inherited environment, if necessary)

var function lookup_in_scope(name : Symbol;

namespace : Namespace;

s : Scope;

internal : Boolean)

final_result : ContextualDeclaration

begin

result : ContextualDeclaration; -- as computed in the rest of function

if s.inherited_environment /= empty_env then

final_result := merge_contextual(s.inherited_environment,result);

else

final_result := result;

endif;

collection finds : ContextualDeclarations;

-- look among all local declarations

finds :> lookup_locally(name,namespace,s,internal);

-- look inside local polys

if namespace = value_namespace() or

namespace = pattern_namespace() then

finds :> lookup_in_polys(name,namespace,s,internal);

endif;

case finds begin

match {} begin
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if internal then

extended : ContextualDeclaration

:= lookup_in_environments(name,namespace,s.extension);

if extended = not_found then

case s begin

match nested_contour(?parent_scope) begin

result :=

lookup_in_scope(name,namespace,parent_scope,internal);

end;

match root_contour(...) begin

-- try other files

collection finds : ContextualDeclarations;

for root_scope in s.also_search begin

if s /= root_scope then

case lookup_in_scope(name,namespace,root_scope,false)

begin

match !not_found begin end;

match ?thing begin

finds :> {thing};

end;

end;

endif;

end;

case finds begin

match {} begin

result := not_found;

end;

match {?find} begin

result := find;

end;

else

result := duplicate_find;

end;

end;

else -- maybe nil ?

result := not_found;

end;

else

result := extended;

endif;

else

result := not_found;

endif;

end;

match {?find} begin

result := find;

end;

else

result := duplicate_find;

end;
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end;

function lookup_locally(name : Symbol;

namespace : Namespace;

s : Scope;

internal : Boolean)

collection : ContextualDeclarations

begin

-- create the barebones environment for the found things

for scope_decls(s,namespace) begin

match {...,?decl=declaration(def(!name,is_public:=?is_public)),...}

if is_public or internal

begin

result :> {contextual(decl.environment,decl)};

end;

end;

end;

pragma memo(lookup_locally);

function lookup_in_polys(name : Symbol;

namespace : Namespace;

s : Scope;

internal : Boolean)

collection : ContextualDeclarations

begin

-- look among all poly's if a value or type

-- and create an empty bound_rib environment.

-- (aps-typecheck will fill in the details).

for poly in s.poly_decls begin

env : Environment := bound_rib(poly,true,true,empty_mapping,

poly.environment);

ps : Scope := poly.saved_contour;

result :> {merge_contextual(env,cd) for cd in

lookup_locally(name,namespace,ps,internal),

merge_contextual(env,cd) for cd in

lookup_in_polys(name,namespace,ps,internal)};

end;

end;

type ContextualDeclarationList := LIST[ContextualDeclaration];

var function lookup_in_environments(name : Symbol;

namespace : Namespace;

envs : Environments)

: ContextualDeclaration

begin

case ContextualDeclarationList$

{lookup_in_environment(name,namespace,env) for env in envs}

begin



353

match {... and !not_found,?find if find /= not_found,...} begin

result := find;

end;

else

result := not_found;

end;

end;

var function lookup_in_environment(name : Symbol;

namespace : Namespace;

env : Environment)

: ContextualDeclaration

begin

case env begin

match some_rib(?decl,?) begin

scope : Scope := decl.saved_contour;

result :=

merge_contextual(env,lookup_in_scope(name,namespace,scope,false));

end;

end;

end;

function scope_decls(s : Scope; namespace : Namespace) : Decls

begin

case namespace begin

match signature_namespace() begin

result := s.signature_decls;

end;

match type_namespace() begin

result := s.type_decls;

end;

match value_namespace() begin

result := s.value_decls;

end;

match pattern_namespace() begin

result := s.pattern_decls;

end;

end;

end;

--- Pattern choices

match pattern_decl(?,function_type(?formals,?),choice_pattern(?pats))

begin

for pat in pats begin

pat.pattern_formals :=

{find_pattern_formal(formal,pat.scope.value_decls)

for formal in formals};

end;
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end;

function find_pattern_formal(formal : remote Declaration;

decls : Decls) : remote Declaration begin

collection results : Decls;

case formal begin

match formal(def(?name,...),...) begin

for decls begin

match {...,?f=formal(def(!name,...),...),...} begin

results :> {f};

end;

end;

end;

end;

case results begin

match {} begin

result := nil;

end;

match {?f} begin

result := f;

end;

else

result := formal; -- NB: multiply defined

end;

end;

--- Scopes:

-- See #NOTE 6 in research5.ram for justification:

-- We don't infer signatures for $ things and

-- don't allow $ signatures. This major change forbids things

-- like T$U$V and makes nested modules almost useless outside

-- of their enclosing module even when they are exported.

-- We have to use inheritance because these modules are non-separable

inherit APS_DETECT_CYCLE[Input](unqualified_contextual_def) begin

var depends_on_self = depends_on_self;

end;

inherit APS_TYPE_INFO[Input]

(unqualified_contextual_def,depends_on_self)

begin

var base_module = base_module;

var base_class = base_class;

var type_inst_env = type_inst_env;

var type_base_known_p = type_base_known_p;

var contextual_type_equalp = contextual_type_equalp;

var environment_equalp = environment_equalp;

end;

inherit APS_SIG_INFO[Input]
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(unqualified_contextual_def,depends_on_self,

base_class,base_module,

type_inst_env,type_base_known_p,

contextual_type_equalp,environment_equalp)

begin

signature SCOPED = SIGNATURED;

[phylum T :: SIGNATURED]

var scopes = (sig_info : function(_:T):Environments);

end;

--- Extension:

attribute Contour.extension : Environments := {};

match ?m=module_decl(result_type:=?result_decl) begin

extension_scopes : Environments := {};

m.saved_contour.extension := extension_scopes;

case result_decl.scopes begin

match {...,bound_rib(!m,...),...}

begin

m.extension_error := "Circular extension";

extension_scopes := {};

end;

else

extension_scopes := result_decl.scopes;

end;

end;

pragma no_memo(lookup_in_environment,lookup_in_polys,lookup_locally);

end;

C.2.4 Cycle Detection

-- This module determines cycles in contextual_def's

module APS_DETECT_CYCLE[Input :: var ABSTRACT_APS[], APS_PATTERN[Input],

var APS_ENVIRON[Input]]

(contextual_def :function(_:remote Input$Use):Input$ContextualDeclaration)

extends Input

begin

-- whether a type or signature depends on itself:

attribute Declaration.depends_on_self : Boolean := false;

private;

--- Detecting type and signature circularity

-- We have circular sets that keep track of the transitive closure of

-- requirements and then see if a declaration precedes itself

-- in the closure:
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type Decls := ORDERED_SET[remote Declaration]((==),(<<));

type DeclLattice := UNION_LATTICE[remote Declaration,Decls];

signature REQUIRES_SIG :=

{Declaration,Class,Module,Signature,Type,Use}, var PHYLUM[];

[phylum T :: REQUIRES_SIG]

circular collection attribute T.requires : DeclLattice;

match ?d:Declaration begin

d.depends_on_self := d in d.requires;

end;

-- a module is circular if one of its type/module declarations

-- or inheritances requires the module to get a value.

-- or its parent signature requires itself.

match ?d=module_decl(result_type:=?rd,parent:=?parent,contents:=?b)

begin

d.requires :> parent.requires |\/| rd.requires;

for b begin

match block({...,?td=some_type_decl(...),...}) begin

d.requires :> td.requires;

end;

match ancestor(inheritance(?,?used,?)) begin

d.requires :> used.requires;

end;

end;

end;

-- a class is circular if its parent/value requires itself.

match ?d=class_decl(parent:=?parent) begin

d.requires :> parent.requires;

end;

match ?d=signature_decl(?,?sig) begin

d.requires :> sig.requires;

end;

-- a type is circular if its value requires itself

match ?d=some_type_decl((type):=?ty) begin

d.requires :> ty.requires;

end;

-- pattern definitions:

match ?d=pattern_decl(?,?,pattern_scope(pattern_call(some_pattern_use(?u),

...)))

begin

case u.contextual_def begin
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-- simple recursion permitted

match contextual(?,!d) begin end;

else

-- mutual recursion not permitted

d.requires :> u.requires;

end;

end;

-- renamings are similar

match ?d=class_renaming(?,?cl) begin

d.requires :> cl.requires;

end;

match ?d=module_renaming(?,?mod) begin

d.requires :> mod.requires;

end;

match ?d=signature_renaming(?,?sig) begin

d.requires :> sig.requires;

end;

match ?d=type_renaming(?,?ty) begin

d.requires :> ty.requires;

end;

match ?d=value_renaming(?,some_value_use(?u:Use)) begin

d.requires :> u.requires;

end;

match ?d=pattern_renaming(?,some_pattern_use(?u:Use)) begin

d.requires :> u.requires;

end;

match ?u:Use begin

case contextual_def(u) begin

match contextual(?,?decl) begin

u.requires :> decl.requires;

u.requires :> {decl};

end;

end;

end;

match ?cl=class_use(?u) begin

cl.requires :> u.requires;

end;

match ?s=sig_use(?u) begin

s.requires :> u.requires;

end;

match ?s=sig_inst(?,?,?cl,?) begin

s.requires :> cl.requires;

end;

match ?s1=mult_sig(?s2,?s3) begin

s1.requires :> s2.requires |\/| s3.requires;

end;
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match ?m=module_use(?u) begin

m.requires :> u.requires;

end;

match ?t=type_use(?u) begin

t.requires :> u.requires;

end;

match ?t=type_inst(?mod,?tactuals,?) begin

t.requires :> mod.requires;

t.requires :> {ty.requires... for ty in tactuals};

end;

match ?t1=remote_type(?t2) begin

t1.requires :> t2.requires;

end;

match ?t1=private_type(?t2) begin

t1.requires :> t2.requires;

end;

end;

C.2.5 Type Information

module APS_TYPE_INFO[Input :: var ABSTRACT_APS[], APS_PATTERN[Input],

var APS_ENVIRON[Input]

-- var APS_DETECT_CYCLE[Input]

]

(contextual_def : function(_:remote Input$Use):Input$ContextualDeclaration;

depends_on_self :function(_:remote Input$Declaration):Boolean)

extends Input

begin

--- This module exports useful functions about types

no_base : ContextualDeclaration := no_contextual();

no_base_type : ContextualType := no_contextual();

-- the base class for a class to be instantiated

-- and the base module for a type that needs to be instantiated

attribute Class.base_class : ContextualDeclaration := no_base;

attribute Module.base_module : ContextualDeclaration := no_base;

--- base_class

match ?cl=class_use(?u) begin

case contextual_def(u) begin

match contextual(?e,?r=class_renaming(?,?cl2)) begin

if not r.depends_on_self then

cl.base_class := cl2.base_class;

else

cl.base_class := no_base;

endif;

end;
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match ?cd=contextual(?e,?d=some_class_decl(...)) begin

cl.base_class := cd;

end;

end;

end;

--- base_module

match ?mod=module_use(?u) begin

case contextual_def(u) begin

match contextual(?e,?d=module_renaming(?,?mod2)) begin

if d.depends_on_self then

mod.base_module := no_base;

else

mod.base_module := mod2.base_module;

endif;

end;

match ?cd=contextual(?,module_decl(...)) begin

mod.base_module := cd;

end;

end;

end;

--- Type information

var function type_base_known_p(ty : remote Type) : Boolean begin

-- that is, we know how the type was created:

-- by a module invocation without an extension, or as a blank type:

case make_contextual_base_type(ty.environment,ty) begin

match contextual(?,type_inst(...)) begin

result := true;

end;

match contextual(?,type_use(?u)) begin

case u.contextual_def begin

match contextual(?,some_type_decl(?,?,no_type())) begin

result := true;

end;

end;

end;

end;

result := false;

end;

--- Next compute a useful bit of information for type instances:

-- the bound rib for a module instantiation:

var function type_inst_env(ty : remote Type) : Environment begin

case ty begin

match type_inst(?m,?tactuals,?) begin
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case m.base_module begin

match contextual(?environ,

?md=module_decl(type_formals:=?tfs,

parent:=?parent,

result_type:=?rd))

begin

if length(tfs) = length(tactuals) then

result :=

bound_rib

(md,true,true,

environment_mapping

({rd=>contextualize(ty),

nth(i,tfs)=>contextualize(nth(i,tactuals))

for i in 0..(length(tactuals)-1)}),

environ);

endif;

end;

end;

end;

end;

result := empty_env;

end;

--- Functions for comparing environments and types

-- returns true when two environments are the same

-- (ignoring capabilities).

var function environment_equalp(e1,e2 : Environment) : Boolean begin

case e1 begin

match root_env() begin

result := e1 = e2;

end;

match unbound_rib(?decl1,?) begin

case e2 begin

match unbound_rib(?decl2,?) begin

result := decl1 == decl2;

end;

end;

end;

-- capabilities irrelevant for bound ribs:

-- polymorphic things are structurally typed:

match bound_rib(?p=polymorphic(type_formals:=?tfs),next:=?n1) begin

case e2 begin

match bound_rib(!p,next:=?n2) begin

result := true and

(contextual_type_equalp(apply_environ(e1,tf),

apply_environ(e2,tf))

for tf in tfs) and

environment_equalp(n1,n2);
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end;

end;

end;

-- for other things, we require instance equivalence:

match bound_rib(?cd=some_class_decl(result_type:=?rd),...) begin

case e2 begin

match bound_rib(!cd,...) begin

result := contextual_eq(apply_environ(e1,rd),apply_environ(e2,rd));

end;

end;

end;

end;

result := false; -- default

end;

[T :: BASIC[]; U :: CONTEXTUAL[T]] begin

var function contextual_eq(c1,c2 : U) : Boolean begin

case c1 begin

match contextual(?e1,?t) begin

case c2 begin

match contextual(?e2,!t) begin

result := environment_equalp(e1,e2);

end;

end;

end;

end;

result := false;

end;

end;

-- return true when two types have the same base type:

var function contextual_type_equalp(ct1,ct2 : ContextualType) : Boolean

:= base_type_equalp(contextual_type_base_contextual_type(ct1),

contextual_type_base_contextual_type(ct2));

var function base_type_equalp(ct1,ct2 : ContextualType) : Boolean begin

case ct1 begin

-- first test the structurally equivalent types:

-- void type:

match contextual(?,no_type()) begin

case ct2 begin

match contextual(?,no_type()) begin

result := true;

end;

end;

end;

-- function types:

match contextual(?e1,function_type(?fs1,?rds1)) begin

case ct2 begin

match contextual(?e2,function_type(?fs2,?rds2)) begin
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result :=

length(fs1) = length(fs2) and

(formal_type_equalp(e1,e2,nth(i,fs1),nth(i,fs2))

for i in 0..(length(fs1)-1)) and

length(rds1) = length(rds2) and

(formal_type_equalp(e1,e2,nth(i,rds1),nth(i,rds2))

for i in 0..(length(rds1)-1));

end;

end;

end;

else

-- otherwise by name:

result := contextual_eq(ct1,ct2);

end;

result := false;

end;

--

var function formal_type_equalp(e1,e2 : Environment;

f1,f2 : remote Declaration)

: Boolean

begin

case f1 begin

match formal(?,?t1) begin

case f2 begin

match formal(?,?t2) begin

result := formal_same_shape_p(f1,f2) and

contextual_type_equalp(make_contextual_type(e1,t1),

make_contextual_type(e2,t2));

end;

end;

end;

match value_decl((type):=?t1) begin

case f2 begin

match value_decl((type):=?t2) begin

result :=

contextual_type_equalp(make_contextual_type(e1,t1),

make_contextual_type(e2,t2));

end;

end;

end;

end;

result := false;

end;

--

function formal_same_shape_p(f1,f2 : remote Declaration) : Boolean begin

case f1 begin

match seq_formal(...) begin

case f2 begin

match seq_formal(...) begin

result := true;
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end;

end;

end;

match normal_formal(...) begin

case f2 begin

match normal_formal(...) begin

result := true;

end;

end;

end;

end;

result := false;

end;

pragma no_memo(formal_type_equalp,formal_same_shape_p);

function make_contextual_type(e : Environment; ty : remote Type)

: ContextualType

begin

case ty begin

match type_use(?u) begin

case u.contextual_def begin

match contextual(?sub,?decl) begin

env : Environment := merge_environ(e,sub);

substituted : ContextualType := apply_environ(env,decl);

if substituted = no_contextual_type then

result := contextual(env,decl.predefined_use);

else

result := simplify_contextual_type(substituted);

endif;

end;

end;

end;

end;

-- default:

result := contextual(e,ty);

end;

pragma no_memo(make_contextual_type);

function simplify_contextual_type(ct : ContextualType) : ContextualType

begin

case ct begin

match contextual(?env,?ty) begin

result := make_contextual_type(env,ty);

end;

end;

end;

pragma memo(simplify_contextual_type);

var function make_contextual_base_type(e : Environment; ty : remote Type)
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: ContextualType

begin

case ty begin

match type_use(?u) begin

case u.contextual_def begin

match contextual(?sub,?decl) begin

env : Environment := merge_environ(e,sub);

substituted : ContextualType := apply_environ(env,decl);

if substituted = no_contextual_type then

case decl begin

match type_renaming(?,?ty) begin

result := make_contextual_base_type(env,ty);

end;

-- base types are not expanded:

match some_type_decl(?,?,no_type()) begin

result := contextual(env,decl.predefined_use);

end;

match some_type_decl(?,?,?ty) begin

result := make_contextual_base_type(env,ty);

end;

match inheritance(?,?ty,?) begin

result := make_contextual_base_type(env,ty);

end;

else

result := contextual(env,decl.predefined_use);

end;

else

-- try another go around:

result := contextual_type_base_contextual_type(substituted);

endif;

end;

end;

end;

match remote_type(?ty) begin

result := make_contextual_base_type(e,ty);

end;

match type_inst(?mod,?tactuals,?) begin

case mod.base_module begin

match contextual(?sub,?md=module_decl(type_formals:=?tfs,

result_type:=?rd))

if length(tfs) = length(tactuals)

begin

env : Environment := merge_environ(e,sub);

-- if the result is a base type, we do not expand

case rd begin

match some_type_decl(?,?,no_type()) begin

result := contextual(e,ty);

end;

match some_type_decl(?,?,?ty1) begin

env : Environment := merge_environ(e,type_inst_env(ty));
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result := make_contextual_base_type(env,ty1);

end;

end;

end;

end;

end;

end;

-- default:

result := contextual(e,ty);

end;

pragma no_memo(make_contextual_base_type);

var function contextual_type_base_contextual_type(ct : ContextualType)

: ContextualType

begin

case ct begin

match contextual(?e,?ty) begin

result := make_contextual_base_type(e,ty);

end;

else

result := no_base_type;

end;

end;

end;

C.2.6 Signature Information

-- This module computes information on signatures for types and signatures.

module APS_SIG_INFO[Input :: var ABSTRACT_APS[],

var APS_ENVIRON[Input],

-- var APS_DETECT_CYCLE[Input],

-- var APS_TYPE_INFO[Input],

var APS_PREDEFINED[Input]]

-- rather than require signatures on the tupes, we

-- just request the needed attributes (in the form of functions)

(contextual_def :function(_:remote Input$Use):Input$ContextualDeclaration;

depends_on_self :function(_:remote Input$Declaration):Boolean;

base_class :function(_:remote Input$Class):Input$ContextualDeclaration;

base_module :function(_:remote Input$Module):Input$ContextualDeclaration;

type_inst_env :function(_:remote Input$Type):Input$Environment;

type_base_known_p :function(_:remote Input$Type) : Boolean;

contextual_type_equalp :function(_,_:Input$ContextualType):Boolean;

environment_equalp :function(_,_:Input$Environment):Boolean)

extends Input

begin

-- the base type formal for a possible extension

attribute Type.base_extension : remote Declaration := nil;

-- This attribute is useful only for type_inst nodes:
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-- It points to one of the actual parameters.

attribute Type.extension_actual : remote Type := nil;

no_base : ContextualDeclaration := no_contextual();

--- Information about signatures for types and signatures:

-- Historically, SigInfoType was a type formal, but now, it's

-- just a bag of Environments.

type SigInfoType = Environments;

signature SIGNATURED := {Type,Signature,Declaration}, var PHYLUM[];

[phylum T :: SIGNATURED]

attribute T.sig_info : SigInfoType := empty_sig_info;

--- Useful values/functions for SigInfoType

-- formerly parameters, or overrideable upon inheritance

empty_sig_info : SigInfoType := {};

function make_sig_info(env : Environment; _ : remote Declaration)

: SigInfoType := {env};

function append_sig_info(envs1,envs2 : SigInfoType)

: SigInfoType

:= {with_possible_added_caps(env1,envs2) for env1 in envs1,

env2 if not already_in_sig_info(env2,envs1) for env2 in envs2};

function with_possible_added_caps(env1 : Environment;

envs2 : SigInfoType) : Environment

begin

case env1 begin

match bound_rib(?decl,?i1,?v1,?mapping,?next) begin

case envs2 begin

match {...,bound_rib(!decl,?i2,?v2,...),...} begin

result := bound_rib(decl,i1 or i2, v1 or v2, mapping, next);

end;

else

result := env1;

end;

end;

else

result := env1; -- capabilities irrelevant

end;

end;

function already_in_sig_info(env1 : Environment;

envs2 : SigInfoType) : Boolean

begin

case env1 begin

match bound_rib(?decl,...) begin
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case envs2 begin

match {...,bound_rib(!decl,...),...} begin

result := true;

end;

else

result := false;

end;

end;

else

result := true; -- throw away

end;

end;

function merge_sig_info(env : Environment; envs : SigInfoType) : SigInfoType

-- merge_environ will mask capabilities for us

:= {merge_environ(env,env2) for env2 in envs};

function add_result_to_sig_info(td : remote Declaration;

envs : Environments) : Environments

:= {add_result_to_environment(contextualize(td.predefined_use),env)

for env in envs};

-- signature decls are almost the same as signature renamings:

pattern some_signature_decl(def : Def; sig : Signature) : Declaration :=

signature_decl(?def,?sig), signature_renaming(?def,?sig);

match ?sd=some_signature_decl(?def,?sig) begin

if not sd.depends_on_self then

sd.sig_info := sig.sig_info;

else

sd.sig_info := empty_sig_info;

endif;

end;

match ?s=sig_use(?u) begin

case contextual_def(u) begin

match contextual(?e,?sd) begin

--?? This will mask out capabilities if the signature is

--?? fetched from a type with only limited capabilities.

s.sig_info := merge_sig_info(e,sd.sig_info);

end;

end;

end;

match ?s=sig_inst(?i,?v,?cl,?tactuals) begin

case cl.base_class begin

match contextual(?e,?d=some_class_decl(type_formals:=?tfs,

parent:=?parent))

begin
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if length(tfs)=length(tactuals) then

new_env : Environment :=

bound_rib(d,i,v,

environment_mapping

({nth(i,tfs)=>contextualize(nth(i,tactuals))

for i in 0..(length(tfs)-1)}),

e);

base_sig_info : SigInfoType := make_sig_info(new_env,d);

if d.depends_on_self then

s.sig_info := base_sig_info;

else

s.sig_info :=

append_sig_info(base_sig_info,

merge_sig_info(new_env,parent.sig_info));

endif;

endif;

end;

end;

end;

match ?s=mult_sig(?s1,?s2) begin

s.sig_info := append_sig_info(s1.sig_info,s2.sig_info);

end;

--- Now signature info for type declarations

-- a type declaration that uses itself gets zippo for sigs:

match ?d:Declaration begin

if d.depends_on_self then

d.sig_info := empty_sig_info;

endif;

end;

-- if no type given, presume that TYPE[] or PHYLUM[] is being called.

match ?td=type_decl(?,no_sig(),no_type()) begin

td.sig_info := add_result_to_sig_info(td,SampleType_decl.sig_info);

end;

match ?td=phylum_decl(?,no_sig(),no_type()) begin

td.sig_info := add_result_to_sig_info(td,SamplePhylum_decl.sig_info);

end;

match ?td=some_type_decl(?,?sig,?ty) begin

case sig begin

match no_sig() begin

td.sig_info := add_result_to_sig_info(td,ty.sig_info);

end;

else

td.sig_info := add_result_to_sig_info(td,sig.sig_info);

end;
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end;

match ?tf=some_type_formal(?,?sig) begin

tf.sig_info := add_result_to_sig_info(tf,sig.sig_info);

end;

match ?td=type_renaming(?,?ty) begin

td.sig_info := add_result_to_sig_info(td,ty.sig_info);

end;

-- an inheritance is considered a type declaration:

match ?td=inheritance(?,?ty,?) begin

td.sig_info := add_result_to_sig_info(td,ty.sig_info);

end;

--- And now sig info for types

match ?ty=type_use(?use) begin

case contextual_def(use) begin

match contextual(?e,?td=type_renaming(?,?ty2)) begin

if not td.depends_on_self then

-- base extension is pointless unless environment is unbound

case e begin

match some_unbound() begin

ty.base_extension := ty2.base_extension;

end;

else

ty.base_extension := nil;

end;

ty.sig_info := merge_sig_info(e,ty2.sig_info);

else

ty.base_extension := nil;

ty.sig_info := empty_sig_info;

endif;

end;

match contextual(?environ,?td) begin

-- It's not necessary to test depends_on_self

-- because we already do it for type declarations.

-- Base extension is pointless unless environment is unbound

case environ begin

match some_unbound() begin

ty.base_extension := td;

end;

else

ty.base_extension := nil;

end;

ty.sig_info := merge_sig_info(environ,td.sig_info);

end;

end;
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end;

match ?ty=type_inst(?m,?tactuals,?) begin

case m.base_module begin

match contextual(?,!NULL_TYPE_decl) begin

ty.sig_info := {};

end;

match contextual(?,!NULL_PHYLUM_decl) begin

ty.sig_info := {};

end;

match contextual

(?environ,

?md=module_decl(type_formals:=?tfs,

parent:=?parent,

result_type:=?rd=some_type_decl(?,?,?result)))

begin

if length(tfs) = length(tactuals) then

new_env : Environment := type_inst_env(ty);

parent_sig_info : SigInfoType :=

merge_sig_info(new_env,parent.sig_info);

base_sig_info : SigInfoType :=

append_sig_info(make_sig_info(new_env,md),parent_sig_info);

new_sig_info : SigInfoType :=

append_sig_info(base_sig_info,

merge_sig_info(new_env,rd.sig_info));

if md.depends_on_self then

ty.sig_info := make_sig_info(new_env,md);

else

-- NB: we could change the semantics and substitute the tf in

-- the whole environment, possibly getting other type formals too.

case result.base_extension begin

match ?tf=some_type_formal(...) if tf in tfs

begin

extending : Type := nth(position(tf,tfs),tactuals);

ty.extension_actual := extending;

ty.base_extension := extending.base_extension;

ty.sig_info := append_sig_info(extending.sig_info,

new_sig_info);

end;

else

ty.sig_info := new_sig_info;

end;

endif;

endif;

end;

end;

end;

match ?ty1=remote_type(?ty2) begin
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ty1.sig_info := ty2.sig_info;

ty1.base_extension := ty2.base_extension;

end;

match ?ty1=private_type(?ty2) begin

ty1.sig_info := ty2.sig_info;

ty1.base_extension := nil; -- hidden by "private"

end;

---- Comparing signatures

function signatures_equalp(envs1,envs2 : Environments) : Boolean :=

length(envs1)=length(envs2) and

(((signature_equalp(sig1,sig2) for sig1 in envs1) or false)

for sig2 in envs2);

function signature_equalp(sig1,sig2 : Environment) : Boolean begin

case Environments${sig1,sig2} begin

match {bound_rib(?cd=some_class_decl(type_formals:=?tfs),?i,?v,?m1,?n1),

bound_rib(!cd,!i,!v,?m2,?n2)} begin

result :=

(contextual_type_equalp(apply_environ(sig1,tf),

apply_environ(sig2,tf))

for tf in tfs) and

environment_equalp(n1,n2);

end;

end;

end;

function signatures_included_in(envs1,envs2 : Environments) : Boolean

begin

collection each_included : Boolean :> true, (and);

for env1 in envs1 begin

case env1 begin

match bound_rib(?cd=some_class_decl(type_formals:=?tfs),?i1,?v1,?,?n1)

begin

case envs2 begin

match {...,?env2=bound_rib(!cd,?i2,?v2,?,?n2),...} begin

each_included :>

(not i1 or i2) and

(not v1 or v2) and

(contextual_type_equalp(apply_environ(env1,tf),

apply_environ(env2,tf))

for tf in tfs) and

environment_equalp(n1,n2);

end;

else
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each_included :> false;

end;

end;

end;

end;

result := each_included;

end;

---- Limited Signatures:

-- the set of types that a signature is limited to, or {} if

-- no limit (yes this is a dumb idea):

attribute Signature.limited_types : ContextualTypeSet := {};

type ContextualTypeSet := SET[ContextualType](contextual_type_equalp);

function merge_limited(e : Environment; limited : ContextualTypeSet)

: ContextualTypeSet

:= {merge_contextual(e,ct) for ct in limited};

match ?s=sig_use(?u) begin

case u.contextual_def begin

match contextual(?e,?sd=some_signature_decl(?,?s2)) begin

if not sd.depends_on_self then

s.limited_types := merge_limited(e,s2.limited_types);

endif;

end;

end;

end;

match ?s=mult_sig(?s1,?s2) begin

if s1.limited_types = {} then

s.limited_types :=

{ty if type_has_signatures(ty,s1.sig_info)

for ty in s2.limited_types};

elsif s2.limited_types = {} then

s.limited_types :=

{ty if type_has_signatures(ty,s2.sig_info)

for ty in s1.limited_types};

else

-- only legal if neither is empty (that is, unlimited)

-- NB: if this intersection is empty, the signature

-- is erroneous (detected in aps-typecheck)

s.limited_types :=

{ty if type_has_signatures(ty,s1.sig_info)

for ty in s2.limited_types} /\

{ty if type_has_signatures(ty,s2.sig_info)

for ty in s1.limited_types};

endif;
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end;

match ?s=fixed_sig(?types) begin

-- if the set is empty, the signature is erroneous

s.limited_types := {contextual(t.environment,t)

if type_base_known_p(t)

for t in types};

end;

-- The following procedure is a weakening of contextual_type_equalp

-- used in certain situations in patterns (in match_patterns :?,

-- and for checking pattern_decl formal bindings). A pattern

-- can match if the required type is a type formal which is

-- limited to match a set of types and the type in question is

-- in the set. If the second type is not a type_formal, then

-- normal processing is used.

var function contextual_type_matchp(ct : ContextualType; ty : remote Type)

: Boolean

begin

case ty begin

match type_use(?u) begin

case u.contextual_def begin

-- A type formal can only be used in its scope,

-- so we are guaranteed that the context will be trivial.

match contextual(unbound_rib(...),some_type_formal(?,?sig)) begin

limited : ContextualTypeSet := sig.limited_types;

if limited /= {} then

result := type_in_limited(ct,limited);

endif;

end;

end;

end;

end;

result := contextual_type_equalp(ct,contextual(ty.environment,ty));

end;

--

var function type_in_limited(ct : ContextualType;

limited : ContextualTypeSet)

: Boolean

begin

if ct in limited then

result := true;

else

-- ct could be a type formal limited to a subset of the types:

case ct begin

match contextual(?e,type_use(?u)) begin

case u.contextual_def begin

-- We can ignore the environment because uses of type formals

-- are always unbound.
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match contextual(?,?tf=some_type_formal(?,?sig)) begin

type_limited : ContextualTypeSet

:= merge_limited(e,sig.limited_types);

if type_limited /= {} and type_limited <= limited then

result := true;

else

result := false;

endif;

end;

end;

end;

end;

endif;

result := false; -- otherwise

end;

function merge_environments(env : Environment; envs : Environments)

: Environments

:= {merge_environ(env,e) for e in envs};

var function type_has_signatures(ct : ContextualType;

rsigs : Environments) : Boolean

begin

case ct begin

match contextual(?environ,?ty) begin

tsigs : Environments := merge_environments(environ,ty.sig_info);

result := signatures_included_in(rsigs,tsigs);

end;

end;

end;

end;

C.3 Type-Checking

The APS type checker takes a tree for which name resolution has been completed,
with the exception of type inference of uses of polymorphic entities. It performs the type
inference and as generates error messages related to type-checking. It uses the preliminary
name resolution of APS_RESOLVE (available in the attribute pre_contextual_def) and some
type manipulation functions from APS_TYPE.

After completion, name binding is complete (APS_BOUND, see Appendix C.2.2) and
typing information is available for many nodes (APS_TYPED):

module APS_TYPED[Input :: var ABSTRACT_APS[], var APS_ENVIRON[Input]]

extends Input

begin

[phylum T ::{Expression,Pattern,Declaration,Default}, var PHYLUM[]]

input attribute T.computed_type : ContextualType;

[phylum T :: {Pattern,Expression,Type}, var PHYLUM[]]
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input attribute T.actual_formal : remote Declaration := nil;

end;

This module is one of the most complicated in the APS compiler, and requires the
use of monotonic guards, as described in Section 7.3.2.

module APS_TYPECHECK[Input :: var ABSTRACT_APS[],

var APS_PREDEFINED[Input],

var APS_ENVIRON[Input],

var APS_RESOLVE[Input],

var APS_DETECT_CYCLE[Input],

var APS_TYPE_INFO[Input],

var APS_SIG_INFO[Input]]

:: var APS_BOUND[Input], var APS_TYPED[Input]

extends Input

-- The task of this module is to annotate each expression

-- and pattern with an inferred type. At the same time it

-- generates type error messages for mismatched types.

-- These two tasks are done together because the type inference

-- algorithm compares types wherever the language requires them

-- to be the same.

-- Declarations also get these attributes:

-- some declarations have missing types (to be inferred)

-- and thus may also need error messages.

begin

signature TYPEABLE := {Expression,Pattern,Declaration,Default}, var PHYLUM[];

[phylum T :: TYPEABLE]

attribute T.computed_type : ContextualType;

[phylum T :: {Expression,Pattern,Declaration,Default,

Type,Signature,Class,Module},

var PHYLUM[]]

collection attribute T.type_errors : TypeErrors;

[phylum T :: {Pattern,Expression,Type}, var PHYLUM[]]

attribute T.actual_formal : remote Declaration := nil;

type TypeErrors := BAG[String];

-- this module also completes the name lookup by filling in the

-- type variables:

attribute (u:Use).contextual_def : ContextualDeclaration :=

u.pre_contextual_def;

-- re-export from APS_TYPE

depends_on_self = Input$depends_on_self;

-- private;
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[T :: SIGNATURED]

sigs = (sig_info : function(_:T):Environments);

-- the rest of this module is highly convoluted:

---- VAR ENVIRONMENTS, CONTEXTS and TYPE VARIABLES

--- Var Environments

-- Var environments are an addition to regular Environments

-- (some ribs, those for poly, use type variables)

type VarEnvironment;

type TypeVariables := LIST[TypeVariable];

type VarEnvironmentMapping :=

MAP[remote Declaration,PartialType](return_error_type);

function return_error_type(_:remote Declaration) : PartialType := error_type;

var_mapping = VarEnvironmentMapping$map;

pattern var_mapping = VarEnvironmentMapping$map;

constructor var_rib(poly : remote Declaration;

input_cap, var_cap : Boolean;

variables : TypeVariables;

next : VarEnvironment) : VarEnvironment;

constructor var_bound_rib(decl : remote Declaration;

input_cap, var_cap : Boolean;

mapping : VarEnvironmentMapping;

next : VarEnvironment) : VarEnvironment;

constructor no_var(e : Environment) : VarEnvironment;

pattern some_var_rib(decl : remote Declaration;

input_cap, var_cap : Boolean;

next : VarEnvironment) : VarEnvironment :=

var_rib(?decl,input_cap:=?input_cap,var_cap:=?var_cap,next:=?next),

var_bound_rib(?decl,input_cap:=?input_cap,var_cap:=?var_cap,next:=?next);

pattern some_bound_rib(decl : remote Declaration;

input_cap, var_cap : Boolean) : VarEnvironment :=

var_bound_rib(?decl,?input_cap,?var_cap,...),

no_var(bound_rib(?decl,?input_cap,?var_cap,...));

empty_var_env : VarEnvironment := no_var(empty_env);

-- the merge functions are a bit complicated but leave most of the

-- hard work to merge_environ:

function merge_var_environ(ve1,ve2 : VarEnvironment) : VarEnvironment

begin

case ve1 begin

match no_var(?e1) begin
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result := merge_environ_var_environ(e1,ve2);

end;

match some_var_rib(?,?i1,?v1,?) begin

case ve2 begin

match no_var(?e2) begin

result := merge_var_environ_environ(ve1,e2);

end;

match var_rib(?poly,?i2,?v2,?tvs,?next) begin

result := var_rib(poly, i1 and i2, v1 and v2, tvs,

merge_var_environ(ve1,ve2));

end;

match var_bound_rib(?decl,?i2,?v2,?mapping,?next) begin

result := var_bound_rib(decl, i1 and i2, v1 and v2,

merge_var_mapping(ve1,mapping),

merge_var_environ(ve1,next));

end;

end;

end;

end;

end;

function merge_environ_var_environ(e1 : Environment; ve2 : VarEnvironment)

: VarEnvironment

begin

case e1 begin

match root_env() begin

result := ve2;

end;

match unbound_rib(...) begin

result := ve2;

end;

match bound_rib(?,?i1,?v1,...) begin

case ve2 begin

match no_var(?e2) begin

result := no_var(merge_environ(e1,e2));

end;

match var_rib(?poly,?i2,?v2,?tvs,?next) begin

result := var_rib(poly,i1 and i2,v1 and v2,tvs,

merge_environ_var_environ(e1,ve2));

end;

match var_bound_rib(?decl,?i2,?v2,?mapping,?next) begin

ve1 : VarEnvironment := no_var(e1);

result := var_bound_rib(decl, i1 and i2, v1 and v2,

merge_var_mapping(ve1,mapping),

merge_environ_var_environ(e1,next));

end;

end;

end;

end;

end;

function merge_var_environ_environ(ve1 : VarEnvironment; e2 : Environment)
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: VarEnvironment

begin

case ve1 begin

match no_var(?e1) begin

result := no_var(merge_environ(e1,e2));

end;

match some_var_rib(?decl1,?i1,?v1,?next1) begin

case e2 begin

match bound_rib(?decl2,?i2,?v2,?mapping2,?next2) begin

result :=

var_bound_rib(decl2, i1 and i2, v1 and v2,

merge_var_environ_mapping(ve1,mapping2),

merge_var_environ_environ(ve1,next2));

end;

match unbound_rib(!decl1,...) begin

result := ve1; -- replace unbound section with var environment

end;

match root_env() begin

result := no_var(e2);

end;

else

-- e2 is an unbound rib, we look inside

-- ve1 for the ending to it. We may never find one

-- and end up using the first rule of this function

result := merge_var_environ_environ(next1,e2);

end;

end;

end;

end;

pragma no_memo(merge_environ_var_environ);

function merge_var_mapping(ve : VarEnvironment;

vm : VarEnvironmentMapping)

: VarEnvironmentMapping

begin

case vm begin

match var_mapping(?pairs) begin

result := var_mapping({merge_pair(p) for p in pairs});

end;

end;

function merge_pair(p : VarEnvironmentMapping$PairType)

: VarEnvironmentMapping$PairType

begin

case p begin

match (=>)(?from,?to) begin

result := from=>merge_partial_type(ve,to);

end;

end;

end;

end;
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function merge_var_environ_mapping(ve : VarEnvironment;

m : EnvironmentMapping)

: VarEnvironmentMapping

begin

case m begin

match environment_mapping(?pairs) begin

result := var_mapping({merge_pair(p) for p in pairs});

end;

end;

function merge_pair(p : EnvironmentMapping$PairType)

: VarEnvironmentMapping$PairType

begin

case p begin

match (=>)(?from,?to) begin

result := from=>make_partial_contextual_type(ve,to);

end;

end;

end;

end;

pragma no_memo(merge_var_mapping,merge_var_environ_mapping);

function apply_var_environ(ve : VarEnvironment;

d : remote Declaration) : PartialType

begin

case ve begin

match var_bound_rib(mapping:=?mapping) begin

result := VarEnvironmentMapping$apply(mapping,d);

end;

match no_var(?e) begin

result := make_var(apply_environ(e,d));

end;

else

result := error_type;

end;

end;

--- Conversion

-- in aps-resolve, bogus bound_ribs are created for polymorphically

-- used entities. here we first convert them to VarEnvironments

-- (in a procedure since we need to create type variables)

-- and then convert them back using the final bindings for type variables.

[phylum T :: TYPEABLE] begin

var procedure environ2var_environ(owner : remote T;

e : Environment) : VarEnvironment begin

case e begin

match bound_rib(?poly=polymorphic(?,?tfs,?),?i,?v,?,?next) begin

result := var_rib(poly,i,v,

{type_variable(tf,owner) for tf in tfs},
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environ2var_environ(owner,next));

end;

else

result := no_var(e);

end;

end;

end;

var function fix_var_environ(ve : VarEnvironment) : Environment begin

case ve begin

match var_rib(?poly=polymorphic(?,?tfs,?),?i,?v,?tvs,?next) begin

result :=

bound_rib(poly,i,v,

environment_mapping({nth(i,tfs)=>nth(i,tvs).binding

for i in 0..(length(tfs)-1)}),

fix_var_environ(next));

end;

match var_bound_rib(?decl,?i,?v,?mapping,?next) begin

result := bound_rib(decl,i,v,

fix_var_mapping(mapping),

fix_var_environ(next));

end;

match no_var(?e) begin

result := e;

end;

end;

end;

var function fix_var_mapping(vm : VarEnvironmentMapping)

: EnvironmentMapping

begin

case vm begin

match var_mapping(?pairs) begin

result := environment_mapping({fix_pair(pair) for pair in pairs});

end;

end;

function fix_pair(pair : VarEnvironmentMapping$PairType)

: EnvironmentMapping$PairType

begin

case pair begin

match (=>)(?tf,?pt) begin

result := tf=>fix_partial_type(pt);

end;

end;

end;

end;

pragma no_memo(fix_var_mapping);
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--- VAR_CONTEXTUAL

-- The var contextual module is a variation on the contextual module.

-- During the type inference process, we create type variables

-- for unknown types and these type variables are used in

-- VarEnvironments as the bindings for poly type formals.

module VAR_CONTEXTUAL[BaseType :: BASIC[]](default : BaseType) :: BASIC[]

begin

constructor var_contextual(var_environ : VarEnvironment;

base : BaseType) : Result;

constructor no_var_contextual() : Result;

default_base = default;

end;

[BaseType; VT :: VAR_CONTEXTUAL[BaseType]] begin

var_contextual = VT$var_contextual;

no_var_contextual = VT$no_var_contextual;

pattern var_contextual = VT$var_contextual;

pattern no_var_contextual = VT$no_var_contextual;

end;

[BaseType; VT :: VAR_CONTEXTUAL[BaseType]] begin

function merge_var_contextual(env : VarEnvironment; x : VT) : VT begin

case x begin

match VT$var_contextual(?sub,?base) begin

result := VT$var_contextual(merge_var_environ(env,sub),base);

end;

else

result := x;

end;

end;

end;

[BaseType; VT :: VAR_CONTEXTUAL[BaseType]; T :: CONTEXTUAL[BaseType]] begin

function make_var(c : T) : VT begin

case c begin

match T$contextual(?e,?base) begin

result := VT$var_contextual(no_var(e),base);

end;

else

result := VT$no_var_contextual();

end;

end;

function var_merge_contextual(ve : VarEnvironment; c : T) : VT begin

case c begin

match T$contextual(?e,?base) begin

result := VT$var_contextual(merge_var_environ_environ(ve,e),base);

end;

else

result := VT$no_var_contextual();

end;

end;
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var function fix_var_contextual(v : VT) : T begin

case v begin

match VT$var_contextual(?ve,?base) begin

result := T$contextual(fix_var_environ(ve),base);

end;

else

result := T$no_contextual();

end;

end;

end;

var function fix_partial_type(pt : PartialType) : ContextualType begin

-- we have to detect the use of a type variable and

-- substitute it out.

--?? Is this the only case we need to substitute?

tv : remote TypeVariable := detect_type_variable(pt);

if tv /= nil then

result := tv.binding;

else

result := fix_var_contextual(pt);

endif;

end;

pragma no_memo(fix_partial_type);

-- Partial types and partial signatures are computed during

-- the type inference process. They have to be fixed before being exported.

type PartialType := VAR_CONTEXTUAL[remote Type](nil);

type PartialTypes := LIST[PartialType];

type VarContextualDeclaration := VAR_CONTEXTUAL[remote Declaration](nil);

type PartialSig := VarEnvironment;

type PartialSigs := LIST[PartialSig];

error_type : PartialType := no_var_contextual();

error_sigs : PartialSigs := {};

[phylum T :: TYPEABLE]

attribute T.partial_type : PartialType := error_type;

[phylum T :: TYPEABLE] match ?x:T begin

x.computed_type := fix_partial_type(x.partial_type);

end;

pattern partial_sig(decl : remote Declaration;

input_cap, var_cap : Boolean) : PartialSig :=
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no_var(bound_rib(?decl,?input_cap,?var_cap,...)),

var_bound_rib(?decl,?input_cap,?var_cap,...);

function make_partial_sigs(envs : Environments) : PartialSigs

:= {no_var(env) for env in envs};

function partial_type_sigs(pt : PartialType) : PartialSigs begin

case pt begin

match var_contextual(?ve,?ty) begin

result := merge_partial_sigs(ve,make_partial_sigs(ty.sigs));

end;

else

result := error_sigs;

end;

end;

function merge_partial_sigs(ve : VarEnvironment;

partial_sigs : PartialSigs)

: PartialSigs

:= {merge_var_environ(ve,venv) for venv in partial_sigs};

--- Type Variables

-- Type variables arise in two different ways:

-- 1> directly through untyped formals (in patterns or implied patterns)

-- (or through polymorphic primitives such as the empty sequence

-- (), undefined_expr, or ...)

-- 2> through polymorphic entities (for which we need an environment)

-- NB: the type formal is nil for <1>

phylum TypeVariable;

[phylum T :: TYPEABLE]

constructor type_variable(tformal : remote Declaration;

owner : remote T) : TypeVariable;

pattern some_type_variable(tformal : remote Declaration) : TypeVariable

:= type_variable(?tformal,?:Expression),

type_variable(?tformal,?:Pattern),

type_variable(?tformal,?:Declaration);

-- sometimes ane entity's type must be inferred

-- (for example, every ?x in a pattern) and for that

-- we need to generate a PartialType from a TypeVariable

-- we do this by using a predefined empty polymorphic entity lying around:

blank_type_formal_use : remote Type

:= get_blank_type_formal_use(blank_poly_decl);

function get_blank_type_formal_use(d : remote Declaration)

: remote Type

begin
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case d begin

match polymorphic(?,{?},block({type_renaming(?,?ty)})) begin

result := ty;

end;

end;

end;

pragma no_memo(get_blank_type_formal_use);

function var_partial_type(tv : remote TypeVariable) : PartialType

:= var_contextual(var_rib(blank_poly_decl,true,true,{tv},

no_var(blank_poly_decl.environment)),

blank_type_formal_use);

--- Type Variable attributes:

-- these attributes are the result of the work of this module:

-- each type variable gets a final binding to a type:

attribute TypeVariable.binding : ContextualType := var_unbound;

var_unbound : ContextualType := no_contextual();

-- Every type variable gets

-- a set of other type variables it is equal to and

-- a set of bindings to partial types

var type TypeVariableSet := ORDERED_SET[remote TypeVariable]((==),(<<));

type BindingSet := SET[PartialType]((=));

var type TypeVariablesLattice :=

UNION_LATTICE[remote TypeVariable,TypeVariableSet];

type BindingsLattice := UNION_LATTICE[PartialType,BindingSet];

circular collection attribute TypeVariable.chain : TypeVariablesLattice;

circular collection attribute TypeVariable.bindings : BindingsLattice;

circular collection attribute TypeVariable.consistent : AndLattice;

circular collection attribute TypeVariable.fits_signature : AndLattice;

[T :: TYPEABLE] match ?ty1=type_variable(?decl,?owner:T) begin

ty1.chain :> {ty1};

-- force closure:

-- (this is probably not too efficient)

for ty2 in ty1.chain begin

if ty1 /= ty2 then

ty2.bindings :> ty1.bindings;

ty2.chain :> ty1.chain;

ty1.bindings :> ty2.bindings;

ty1.chain :> ty2.chain;

endif;

end;

-- for each two bindings, we call a procedure that does

-- type inference for two types that must be identical:

for b1 in ty1.bindings begin
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for b2 in ty1.bindings begin

ty1.consistent :> require_type_equal(b1,b2);

end;

end;

-- each binding must satisfy the signature

-- (necessary to get other type variables bound)

case decl begin

match !nil begin end;

match ?td=some_type_formal(...) begin

formal_sigs : PartialSigs :=

merge_partial_sigs(owner.use_var_environ,

make_partial_sigs(td.sigs));

for b in ty1.bindings begin

if not require_sig(b,formal_sigs) then

ty1.fits_signature :> false;

endif;

end;

end;

end;

-- add message if signature doesn't fit

if not ty1.fits_signature then

owner.type_errors :> {"type variable binding does not fit signatures"};

endif;

-- set the binding or flag as inconsistent

if ty1.consistent then

case ty1.bindings begin

match {?ty,...} begin

ty1.binding := fix_partial_type(ty);

end;

else

owner.type_errors :> {"type variable unbound"};

end;

else

owner.type_errors :> {"type variable has inconsistent binding"};

endif;

-- check limited type formals:

case decl begin

match !nil begin end;

match some_type_formal(?,?sig) begin

limited : ContextualTypeSet :=

{merge_contextual(owner.use_fixed_environ,ct)

for ct in sig.limited_types};

if limited /= {} and

not type_in_limited(ty1.binding,limited) then

owner.type_errors :>

{"type variable binding does not fit limitation"};

endif;

end;

end;

-- check binding is not private:



386

case ty1.binding begin

match contextual(?env,?ty) begin

if type_is_private(env,ty) then

owner.type_errors :> {"type variable binding is private"};

endif;

end;

end;

end;

-- return whether the type is implementable without looking at private

-- parts of other modules:

function type_is_private(env : Environment; ty : remote Type) : Boolean

begin

case ty begin

match type_use(?u) begin

case u.pre_contextual_def begin

match contextual(?sub,?decl) begin

new_env : Environment := merge_environ(env,sub);

result := decl_is_private(new_env,decl);

end;

end;

end;

match remote_type(?ty1) begin

result := type_is_private(env,ty1);

end;

match private_type(?ty1) begin

-- this is a different sense of private than that being tested here

result := type_is_private(env,ty1);

end;

else

-- some sort of error

result := true;

end;

-- default

result := false;

end;

function decl_is_private(env : Environment;

decl : remote Declaration) : Boolean

begin

case env begin

match root_env() begin

result := false;

end;

match unbound_rib(...) begin

result := false;

end;

match bound_rib(...) begin

case decl begin

match declaration(def(is_public:=?is_public)) begin
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result := not is_public;

end;

else

result := true;

end;

end;

end;

end;

pragma no_memo(decl_is_private);

---- CIRCULARITY CHECKING

match ?d:Declaration begin

if d.depends_on_self then

d.type_errors :> {"Circular renaming or dependency"};

endif;

end;

---- SIGNATURE CHECKING

--- Checking uses of fixed_sig: {...} signatures

-- These signatures are very special and can only be used

-- to constrain formal parameters. not as a parent signature

-- for modules or signatures. Furthermore, it is not legal

-- to have an empty set of possible types (this rule is not

-- logically necessary, but makes the implementation convenient;

-- it almost certainly indicates an error). And all the types

-- in a fixed_sig must be known to be different (all must

-- have at their base a known call to TYPE)

match ?s=fixed_sig({}) begin

s.type_errors :> {"illegal empty finite signature"};

end;

match fixed_sig({...,?ty,...}) begin

if not type_base_known_p(ty) then

ty.type_errors :> {"does not have a known base type"};

endif;

end;

match ?s=mult_sig(?s1,?s2) begin

if s.limited_types = {} and

(s1.limited_types /= {} or s2.limited_types /= {}) then

s.type_errors :> {"illegal empty finite signature"};

endif;
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end;

match some_class_decl(parent:=?parent) begin

if parent.limited_types /= {} then

parent.type_errors :> {"illegal use of finite signature"};

endif;

end;

--- Checking signatures for duplicates

-- signatures may not include duplicate copies of a signature

-- unless they're bindings of the formals are equal

match ?s=mult_sig(?s1,?s2) begin

for s1.sigs begin

match {...,?e1=bound_rib(?cd=some_class_decl(def:=def(?name,...),

type_formals:=?tfs),...),

...}

begin

for s2.sigs begin

match {...,?e2=bound_rib(!cd,...),...} begin

if false or (not contextual_type_equalp(apply_environ(e1,tf),

apply_environ(e2,tf))

for tf in tfs)

then

s.type_errors :> {"contradictory " || name || " signatures"};

endif;

end;

end;

end;

end;

end;

-- Each type declaration must satisfy its declared signatures:

match ?td=some_type_decl(?,?sig,?ty) begin

-- we could compute the sigs and then add the result, but the

-- work is already done for teh declaration itself. In that case,

-- we want to avoid testing the inferred signatures against themselves.

-- So we only do the test when signatures are given:

case sig begin

match no_sig() begin end;

else

if not require_sig(make_simple_partial_type(ty),

make_partial_sigs(td.sigs)) then

td.type_errors :> {"Assignment does not satisfy signatures"};

endif;

end;

end;
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pattern some_type_equality(def : Def; (type) : Type) : Declaration

:= type_renaming(?def,?(type)), some_type_decl(?def,?,?(type));

match ?d=type_replacement(?old,?new) begin

if not require_sig(make_simple_partial_type(new),

make_partial_sigs(old.sigs)) then

d.type_errors :> {"Replacement does not satisfy signatures"};

endif;

case old begin

match type_use(?u) begin

case u.pre_contextual_def begin

-- don't check base type if private:

match contextual(?,some_type_decl(?,?,private_type(...))) begin end;

-- Now we cannot just compare the two types becasue by the

-- substitution in the inheritance they will be identical.

-- We have to delve a little deeper.

-- We do that by forming the base type *before* mergeing with

-- the environment:

match contextual(?e,?decl) begin

pt : PartialType :=

make_partial_contextual_type

(no_var(e),make_contextual_base_type(decl.environment,

decl.predefined_use));

if not require_type_equal(pt,make_simple_partial_type(new)) then

d.type_errors :> {"Replacement not the same type"};

endif;

end;

end;

end;

end;

end;

match ?d=signature_replacement(...) begin

d.type_errors :> {"Signature replacement is not permitted"};

end;

--- Signature instantiation

-- each signature instance must be given enough parameters

match ?si=sig_inst(?,?,?cl,?tactuals) begin

case cl.base_class begin

match contextual(?,some_class_decl(type_formals:=?tfs)) begin

if length(tactuals) /= length(tfs) then

if length(tactuals) < length(tfs) then

si.type_errors :> {"not enough type parameters to class"};

else

si.type_errors :> {"too many type parameters to class"};

endif;

endif;
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end;

end;

end;

pattern some_class_decl_or_renaming() : Declaration :=

class_renaming(...), class_decl(...), module_decl(...);

match ?cl=class_use(?u) begin

case u.pre_contextual_def begin

match contextual(?,some_class_decl_or_renaming(...)) begin end;

match contextual(...) begin

cl.type_errors :> {"not a class"};

end;

end;

end;

match ?s=sig_use(?u) begin

case u.pre_contextual_def begin

match contextual(?,some_class_decl_or_renaming(...)) begin

s.type_errors :> {"must be instantiated"};

end;

end;

end;

---- TYPE CHECKING

--- Type Requirements

-- Type variables get their bindings by being

-- for every kind of expression, pattern or declaration,

-- we do some checking:

function make_simple_partial_type(raw : remote Type) : PartialType begin

if raw == nil then

result := error_type;

else

result := var_contextual(no_var(raw.environment),raw);

endif;

end;

pattern environment_rib(e : Environment) : Environment :=

?e, some_rib(next:=environment_rib(?e));

pattern var_environment_rib(e : Environment) : VarEnvironment :=

no_var(environment_rib(?e)), some_var_rib(next:=var_environment_rib(?e));

pattern var_environment_var_rib(ve : VarEnvironment) : VarEnvironment :=

?ve, some_var_rib(next:=var_environment_var_rib(?ve));

-- NB: this complicated function is called to get the argument or

-- result types of a function_type that may have been contextual.
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-- It is necessary to look up what the types mean in the context of

-- the call in order to get the right types to use for type inference.

function make_partial_type(ve : VarEnvironment;

ty : remote Type) : PartialType

begin

-- compare with make_contextual_type in aps-type.aps

case ty begin

match !nil begin

result := error_type;

end;

match type_use(?u) begin

case u.pre_contextual_def begin

match contextual(?sub,?decl) begin

venv : VarEnvironment := merge_var_environ_environ(ve,sub);

substituted : PartialType := apply_var_environ(venv,decl);

if substituted = error_type then

result := var_contextual(venv,decl.predefined_use);

else

result := simplify_partial_type(substituted);

endif;

end;

end;

end;

end;

-- default:

result := var_contextual(ve,ty);

end;

function simplify_partial_type(pt : PartialType) : PartialType begin

case pt begin

match var_contextual(?venv,?ty) begin

result := make_partial_type(venv,ty);

end;

end;

end;

function apply_and_simplify(ve : VarEnvironment; td : remote Declaration)

: PartialType

:= simplify_partial_type(apply_var_environ(ve,td));

function make_partial_contextual_type(ve : VarEnvironment;

ct : ContextualType) : PartialType

begin

case ct begin

match contextual(?e,?ty) begin

result := make_partial_type(merge_var_environ_environ(ve,e),ty);

end;

else

result := error_type;

end;
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end;

function make_contextual_type_partial(ct : ContextualType) : PartialType

begin

case ct begin

match contextual(?e,?ty) begin

result := make_partial_type(no_var(e),ty);

end;

else

result := error_type;

end;

end;

function merge_partial_type(ve : VarEnvironment;

pt : PartialType) : PartialType

begin

case pt begin

match var_contextual(?sub,?ty) begin

result := make_partial_type(merge_var_environ(ve,sub),ty);

end;

else

result := error_type;

end;

end;

pragma no_memo(make_partial_type,make_partial_contextual_type,

make_contextual_type_partial,merge_partial_type);

function make_partial_base_type(ve : VarEnvironment; ty : remote Type)

: PartialType

begin

case ty begin

match type_use(?u) begin

case u.pre_contextual_def begin

match contextual(?sub,?decl) begin

venv : VarEnvironment := merge_var_environ_environ(ve,sub);

substituted : PartialType := apply_var_environ(venv,decl);

if substituted = error_type then

case decl begin

match type_renaming(?,?ty) begin

result := make_partial_base_type(venv,ty);

end;

-- base types are not expanded:

match some_type_decl(?,?,no_type()) begin

result := var_contextual(venv,decl.predefined_use);

end;

match some_type_decl(?,?,?ty) begin

result := make_partial_base_type(venv,ty);

end;

match inheritance(?,?ty,?) begin
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result := make_partial_base_type(venv,ty);

end;

else

result := var_contextual(venv,decl.predefined_use);

end;

else

-- try another go around:

result := partial_type_base_type(substituted);

endif;

end;

end;

end;

match remote_type(?ty) begin

result := make_partial_base_type(ve,ty);

end;

match type_inst(?mod,?tactuals,?) begin

case mod.base_module begin

match contextual(?sub,?md=module_decl(type_formals:=?tfs,

result_type:=?rd))

if length(tfs) = length(tactuals)

begin

-- if the result is a base type, we do not expand

case rd begin

match some_type_decl(?,?,no_type()) begin

result := var_contextual(ve,ty);

end;

match some_type_decl(?,?,?ty1) begin

venv : VarEnvironment :=

merge_var_environ_environ(ve,type_inst_env(ty));

result := make_partial_base_type(venv,ty1);

end;

end;

end;

end;

end;

end;

-- default:

result := var_contextual(ve,ty);

end;

pragma no_memo(make_partial_base_type);

function partial_type_base_type(pt : PartialType)

: PartialType

begin

case pt begin

match var_contextual(?ve,?ty) begin

result := make_partial_base_type(ve,ty);

end;

else
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result := error_type;

end;

end;

--- The engine

-- the following proedures do all the basic work of type checking

pattern collection_class(elem_formal : Declaration) : Declaration :=

!READ_ONLY_COLLECTION_decl and

class_decl(type_formals:={?elem_formal});

pattern collection_partial_sig(elem_formal : remote Declaration)

: VarEnvironment

:= var_bound_rib(collection_class(?elem_formal),...),

no_var(bound_rib(collection_class(?elem_formal),...));

[T :: TYPEABLE] begin

procedure require_type(x : T; pt : PartialType) begin

if not require_type_equal(x.partial_type,pt) then

x.type_errors :> {"Type mismatch"};

endif;

end;

var procedure require_sequence_type(x : T; pt : PartialType) : PartialType

begin

case pt.partial_type_sigs begin

match {...,?ve=collection_partial_sig(?elem_formal),...} begin

result := apply_and_simplify(ve,elem_formal);

end;

else

result := error_type;

x.type_errors :> {"not a sequence type"};

end;

end;

end;

-- require_type_equal:

-- If one of the two types is a type variable, bind it.

-- Otherwise, if if both are builtin types (functions or

-- internal list types) ensure that they are compatible structurally.

-- Otherwise, compare the base type declarations.

-- Note we can tell whether something is a type variable by checking

-- it's base declaration and seeing if it is a type formal bound to

-- a type in the var environment.

var procedure require_type_equal(t1,t2 : PartialType) : Boolean begin

if t1 /= error_type and t2 /= error_type then

pbt1 : PartialType := partial_type_base_type(t1);

pbt2 : PartialType := partial_type_base_type(t2);

tv1 : remote TypeVariable := detect_type_variable(pbt1);
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tv2 : remote TypeVariable := detect_type_variable(pbt2);

if tv1 /= nil then

if tv2 /= nil then

tv1.chain :> {tv2};

tv2.chain :> {tv1};

else

tv1.bindings :> {t2};

endif;

result := true;

elsif tv2 /= nil then

tv2.bindings :> {t1};

result := true;

else

case pbt1 begin

match var_contextual(?,no_type()) begin

case pbt2 begin

match var_contextual(?,no_type()) begin

result := true;

end;

end;

end;

match var_contextual(?ve1,function_type(?fs1,?rds1))

begin

case pbt2 begin

match var_contextual(?ve2,function_type(?fs2,?rds2))

begin

result :=

length(fs1) = length(fs2) and

(require_formal_type_equal(ve1,ve2,nth(i,fs1),nth(i,fs2))

for i in 0..(length(fs1)-1)) and

length(rds1) = length(rds2) and

(require_formal_type_equal(ve1,ve2,nth(i,rds1),nth(i,rds2))

for i in 0..(length(rds1)-1));

end;

end;

end;

else -- not a builtin type, require type eq'ness

case pbt1 begin

match var_contextual(?ve1,?ty) begin

case pbt2 begin

match var_contextual(?ve2,!ty) begin

result := require_var_environ_equal(ve1,ve2);

end;

end;

end;

end;

end;

result := false; -- default

endif;

else
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result := true;

endif;

end;

var procedure require_formal_type_equal(ve1,ve2 : VarEnvironment;

f1,f2 : remote Declaration) : Boolean

begin

case f1 begin

match formal(?,?t1) begin

case f2 begin

match formal(?,?t2) begin

result := formal_same_shape_p(f1,f2) and

require_type_equal(make_partial_type(ve1,t1),

make_partial_type(ve2,t2));

end;

end;

end;

match value_decl((type):=?t1) begin

case f2 begin

match value_decl((type):=?t2) begin

result :=

require_type_equal(make_partial_type(ve1,t1),

make_partial_type(ve2,t2));

end;

end;

end;

end;

result := false;

end;

function detect_type_variable(pt : PartialType)

: remote TypeVariable

begin

case pt begin

match var_contextual(var_rib(polymorphic(type_formals:=?tfs),

variables:=?tvs),

type_use(?u)) begin

case u.pre_contextual_def begin

match contextual(?,?tf) if tf in tfs begin

result := nth(position(tf,tfs),tvs);

end;

end;

end;

end;

-- default

result := nil;

end;

var procedure require_var_environ_equal(ve1,ve2 : VarEnvironment) : Boolean

-- compare with environment_equalp in aps-type.aps
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begin

case ve1 begin

match no_var(?e1) begin

case ve2 begin

match no_var(?e2) begin

result := environment_equalp(e1,e2);

end;

else

-- swap so as to have the no_var always in second place

result := require_var_environ_equal(ve2,ve1);

end;

end;

-- for classes and modules, name equivalence is used

match var_bound_rib(?d1=some_class_decl(result_type:=?rd),...)

begin

case ve2 begin

match some_bound_rib(?d2,...) begin

result :=

d1==d2 and

require_type_equal(apply_and_simplify(ve1,rd),

apply_and_simplify(ve2,rd));

end;

end;

end;

-- for poly's structural equivalence is used

-- (this case should not appear unless some polymorphic uses

-- were inferred in pre_contextual_def (currently not))

match var_bound_rib(?d1=polymorphic(type_formals:=?tfs),next:=?n1) begin

case ve2 begin

match no_var(bound_rib(?d2,next:=?n2)) begin

result := d1==d2 and

(require_type_equal(apply_and_simplify(ve1,tf),

apply_and_simplify(ve2,tf))

for tf in tfs) and

require_var_environ_equal(n1,no_var(n2));

end;

match var_rib(...) begin

-- swap to handle var rib as first always

result := require_var_environ_equal(ve2,ve1);

end;

match var_bound_rib(?d2,next:=?n2) begin

result :=

d1==d2 and

(require_type_equal(apply_and_simplify(ve1,tf),

apply_and_simplify(ve2,tf))

for tf in tfs) and

require_var_environ_equal(n1,n2);

end;

end;

end;
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-- var rib's are always polys and thus we use structural equivalence

match var_rib(?p1=polymorphic(type_formals:=?tfs),?,?,?tvs1,?n1) begin

case ve2 begin

match no_var(bound_rib(?p2,next:=?n2)) begin

result := p1 == p2 and

(assign_type_variable(nth(i,tvs1),

apply_and_simplify(ve2,nth(i,tfs)))

for i in 0..(length(tvs1)-1)) and

require_var_environ_equal(n1,no_var(n2));

end;

match var_bound_rib(?p2,next:=?n2) begin

result := p1 == p2 and

(assign_type_variable(nth(i,tvs1),

apply_and_simplify(ve2,nth(i,tfs)))

for i in 0..(length(tvs1)-1)) and

require_var_environ_equal(n1,n2);

end;

match var_rib(?p2,?,?,?tvs2,?n2) begin

result := p1 == p2 and

(chain_type_variables(nth(i,tvs1),nth(i,tvs2))

for i in 0..(length(tvs1)-1)) and

require_var_environ_equal(n1,n2);

end;

end;

end;

end;

result := false; -- default

end;

--

-- a convenient way to force type variables together.

var procedure chain_type_variables(tv1,tv2 : remote TypeVariable) : Boolean

begin

tv1.chain :> {tv2};

tv2.chain :> {tv1};

result := true;

end;

--

-- likewise for making assignments

var procedure assign_type_variable(tv : remote TypeVariable;

pt : PartialType) : Boolean

begin

tv2 : remote TypeVariable := detect_type_variable(pt);

if tv2 /= nil then

result := chain_type_variables(tv,tv2);

else

tv.bindings :> {pt};

result := true;

endif;

end;
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-- This procedure doesn't need to worry about fixed_sig's:

-- These are handled elsewhere. We go through each required

-- signature and find it (or not) and then require the

-- appropriate var environments to be equal. This specification

-- is correct because a type is allowed only one incarnation of

-- a named signature.

var procedure require_sig(pt : PartialType; req_sigs : PartialSigs)

collection all_found : Boolean :> true, (and)

begin

sigs : PartialSigs := partial_type_sigs(pt);

for req in req_sigs begin

case req begin

match ?req_ve=partial_sig(?sd,?req_input,?req_var) begin

case sigs begin

match {...,?ve=partial_sig(!sd,?i,?v),...}

begin

all_found :>

(i or not req_input) and

(v or not req_var) and

require_sig_types_equal(ve,req_ve);

end;

else

all_found :> false;

end;

end;

end;

end;

end;

-- a useful function:

function var_environ_next(ve : VarEnvironment) : VarEnvironment begin

case ve begin

match no_var(some_rib(next:=?next)) begin

result := no_var(next);

end;

match some_var_rib(next:=?next) begin

result := next;

end;

end;

end;

-- require that the arguments are the same.

var procedure require_sig_types_equal(ve1,ve2 : VarEnvironment) : Boolean

begin

case ve1 begin

match some_bound_rib(?cd=some_class_decl(type_formals:=?tfs),...) begin

result :=

require_var_environ_equal(var_environ_next(ve1),

var_environ_next(ve2)) and
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(require_type_equal(apply_and_simplify(ve1,tf),

apply_and_simplify(ve2,tf))

for tf in tfs);

end;

end;

-- otherwise undefined (partial_sigs must be some kind of bound_rib).

end;

--- Built In Types:

function make_partial_type_for_decl(decl : remote Declaration) : PartialType

begin

if decl == nil then

result := error_type;

else

result := make_simple_partial_type(decl.predefined_use);

endif;

end;

boolean_partial_type : PartialType :=

make_partial_type_for_decl(Boolean_decl);

integer_partial_type : PartialType :=

make_partial_type_for_decl(Integer_decl);

real_partial_type : PartialType :=

make_partial_type_for_decl(IEEEdouble_decl);

string_partial_type : PartialType :=

make_partial_type_for_decl(String_decl);

char_partial_type : PartialType :=

make_partial_type_for_decl(Character_decl);

void_partial_type : PartialType :=

make_simple_partial_type(Void_type);

--- Declarations

pattern some_typed_decl((type) : Type) : Declaration

:= value_decl((type):=?(type)),

attribute_decl((type):=?(type)),

function_decl((type):=?(type)),

procedure_decl((type):=?(type)),

constructor_decl((type):=?(type)),

pattern_decl((type):=?(type)),

formal((type):=?(type));

-- handle a special case:

-- formals don't need types in some cases:

match ?d=formal((type):=no_type()) begin

tv : TypeVariable := type_variable(nil,d);
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d.partial_type := var_partial_type(tv);

end;

match ?d=some_typed_decl((type):=?ty) begin

d.partial_type := make_simple_partial_type(ty);

end;

[T :: {Expression,Pattern}, var PHYLUM[]] begin

match ?d=renaming(?,?old:T) begin

if d.depends_on_self then

d.partial_type := error_type;

else

d.partial_type := old.partial_type;

endif;

end;

end;

-- declaration type checks:

match value_decl((type):=?ty,default:=?def) begin

require_type(def,make_simple_partial_type(ty));

end;

match attribute_decl((type):=function_typing(?,?ty),

default:=?def)

begin

require_type(def,make_simple_partial_type(ty));

end;

match pattern_decl((type):=function_typing(?formals,?ty),

choices:=choice_pattern({...,?pat,...}))

begin

require_type(pat,make_simple_partial_type(ty));

for i in 0..(length(formals)-1) begin

formal : remote Declaration := nth(i,formals);

pformal : remote Declaration := nth(i,pat.pattern_formals);

case formal begin

match formal(def(?name,...),?ty) begin

if pformal == nil then

pat.type_errors :> {"Formal " || name || " not bound"};

elsif pformal == formal then

pat.type_errors :> {"Formal " || name || " multiply bound"};

elsif not contextual_type_matchp(pformal.computed_type,ty) then

pformal.type_errors :> {"Does not match formal"};

endif;

end;

end;

end;

end;

[T :: {Expression, Pattern}, var PHYLUM[]] begin
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match replacement(?old:T,?new:T) begin

require_type(new,old.partial_type);

end;

end;

--- Defaults

match ?d=simple(?e) begin

d.partial_type := e.partial_type;

end;

match ?d=composite(?e,?) begin

d.partial_type := e.partial_type;

end;

-- this pattern used to cover more cases:

pattern combination_default(initial,func : Expression) : Default

:= composite(?initial,?func);

match combination_default(?e,?func) begin

case partial_type_base_type(func.partial_type) begin

match var_contextual(?ve,function_typing(?formals,?rt)) begin

if length(formals) /= 2 then

func.type_errors :> {"not a binary function"};

endif;

case e.partial_type begin

match !error_type begin end;

match ?pt begin

for formal in formals begin

if not require_type_equal(make_partial_contextual_type

(ve,formal.computed_type),pt) then

func.type_errors :>

{"function formal does not have required type"};

endif;

end;

if not require_type_equal(make_partial_type(ve,rt),pt) then

func.type_errors :>

{"function result does not have required type"};

endif;

end;

end;

end;

else

func.type_errors :> {"not a function"};

end;

end;

--- Uses
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[phylum T :: TYPEABLE] begin

attribute T.use_var_environ : VarEnvironment := empty_var_env;

attribute T.use_fixed_environ : Environment := empty_env;

end;

[phylum T :: {Expression,Pattern}, var PHYLUM[]] begin

pattern typed_use(u : Use) : T :=

value_use(?u) :? T, pattern_use(?u) :? T;

match ?x=typed_use(use(!underscore_symbol)) begin

tv : TypeVariable := type_variable(nil,x);

x.partial_type := var_partial_type(tv);

end;

match ?x=typed_use(?u:Use) begin

case u.pre_contextual_def begin

match contextual(?env,?decl) begin

ve : VarEnvironment := environ2var_environ(x,env);

x.use_var_environ := ve;

-- pragma break();

x.partial_type := make_partial_contextual_type

(ve,decl.computed_type); -- NB: need fixed type here.

x.use_fixed_environ := fix_var_environ(ve);

u.contextual_def := contextual(x.use_fixed_environ,decl);

end;

end;

end;

end;

--- Calls

-- we combine pattern calls and function calls into

-- a single analysis.

-- This analysis needs to handle both

-- variable arity functions (built in) and also

-- named or elided parameters (for patterns)

type DeclList := LIST[remote Declaration];

[phylum T :: {Expression,Pattern}, var PHYLUM[]] begin

-- list of formals currently unsatisfied

attribute T.formals_before : DeclList;

attribute T.formals_after : DeclList;

-- whether or not the arguments are matched by position

-- (true until a named actual)

attribute T.positional_before : Boolean;

attribute T.positional_after : Boolean;

end;
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[phylum T :: {Expression,Pattern}, var PHYLUM[];

phylum L :: {Actuals,PatternActuals},SEQUENCE[T], var PHYLUM[]] begin

pattern some_actual(actual : T; formal : Expression) : T

:= pattern_actual(?actual,?formal) :? T;

-- return whether too few arguments:

-- (so error message can be placed).

var procedure match_formals_actuals(ve : VarEnvironment;

formals : remote Declarations;

actuals : L) : Boolean

begin

-- the formals remaining after processing the arguments

remaining_formals : DeclList;

(actuals...).formals_before, remaining_formals :=

{formals...}, (actuals...).formals_after;

-- whether no named parameters exist:

all_positional : Boolean;

(actuals...).positional_before, all_positional :=

true, (actuals...).positional_after;

for x in actuals begin

-- first handle the case of a named formal

case x begin

match some_actual(?actual,?v=value_use(?u=use(?formal_name))) begin

case x.formals_before begin

match {...,?f=formal(def(!formal_name,...),?ty),...} begin

u.contextual_def := contextual(fix_var_environ(ve),f);

require_type(actual,make_partial_type(ve,ty));

x.actual_formal := f;

x.formals_after := {f1 if f1/=f for f1 in x.formals_before};

end;

else

v.type_errors :> {"unknown formal"};

x.formals_after := x.formals_before;

end;

x.positional_after := false;

end;

else

-- Give error message if not positional

if not x.positional_before then

x.type_errors :> {"positional argument after named argument"};

endif;

x.positional_after := x.positional_before;
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-- handle case of a sequence formal:

case x.formals_before begin

match {?f=seq_formal(?,?ty)} begin

require_type(x,make_partial_type(ve,ty));

x.actual_formal := f;

x.formals_after := x.formals_before;

end;

else

-- handle case of rest things

case x begin

match rest_pattern(no_pattern()) :? T begin

x.actual_formal := nil;

x.formals_after := {};

end;

match rest_pattern(?) :? T begin

x.type_errors :> {"rest patterns cannot be used here"};

x.formals_after := {};

end;

else

-- normal case

case x.formals_before begin

match {?f=formal(?,?ty),...} begin

require_type(x,make_partial_type(ve,ty));

x.actual_formal := f;

x.formals_after := butfirst(x.formals_before);

end;

else

x.type_errors :> {"too many arguments"};

x.formals_after := {};

end;

end; -- case for rest

end; -- case for sequence formals

end; -- case for named formal

end; -- for actuals

case remaining_formals begin

match {} begin end;

match {seq_formal(...)} begin end;

else

result := not all_positional;

end;

result := true;

end; -- procedure match_formals_actuals

-- pragma inline(match_formals_actuals);

-- not useful outside this block:

pattern call(func : T; actuals : L) : T
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:= pattern_call(?func,?actuals) :? T, funcall(?func,?actuals) :? T;

match ?res=call(?func,?actuals) begin

case partial_type_base_type(func.partial_type) begin

match var_contextual(?ve,function_typing(?formals,?rtype)) begin

res.partial_type := make_partial_type(ve,rtype);

if not match_formals_actuals(ve,formals,actuals) then

res.type_errors :> {"too few arguments"};

endif;

end;

else

res.partial_type := error_type;

func.type_errors :> {"not of function type"};

end;

end; -- match call

end; -- end poly

match ?d=multi_call(?proc,?actuals,?results) begin

case partial_type_base_type(proc.partial_type) begin

match var_contextual(?ve,function_type(?formals,?result_decls)) begin

if not match_formals_actuals(ve,formals,actuals) then

d.type_errors :> {"too few arguments"};

endif;

if length(results) = length(result_decls) then

for i in 0..(length(results)-1) begin

case nth(i,result_decls) begin

match value_decl((type):=?ty) begin

require_type(nth(i,results),make_partial_type(ve,ty));

end;

end;

end;

else

d.type_errors :> {"wrong number of results (expected " ||

length(result_decls) || ")"};

endif;

end;

else

proc.type_errors :> {"not of some functional type"};

end;

end;

attribute Type.type_formals_before : DeclList;

attribute Type.type_formals_after : DeclList;

-- return whether too few arguments:

-- (so error message can be placed).

var procedure match_type_formals_actuals(env : Environment;

formals : remote Declarations;

actuals : TypeActuals)

: Boolean

begin
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-- the formals remaining after processing the arguments

remaining_type_formals : DeclList;

(actuals...).type_formals_before, remaining_type_formals :=

{formals...}, (actuals...).type_formals_after;

result := length(remaining_type_formals) = 0;

venv : VarEnvironment := no_var(env);

for x in actuals begin

-- get the formal:

case x.type_formals_before begin

match {} begin

x.type_errors :> {"too many arguments"};

end;

match {?f=some_type_formal(?,?sig),...} begin

x.actual_formal := f;

x.type_formals_after := butfirst(x.type_formals_before);

if not require_sig(var_contextual(no_var(x.environment),x),

merge_partial_sigs(venv,

make_partial_sigs(f.sigs)))

then

x.type_errors :> {"type does not conform to signature"};

endif;

-- check limitation

ct : ContextualType := contextual(x.environment,x);

limited : ContextualTypeSet

:= merge_limited(env,sig.limited_types);

if limited /= {} and not type_in_limited(ct,limited) then

x.type_errors :>

{"type actual does not fit limitation"};

endif;

end;

end; -- case type_formals_before

end; -- for actuals

end; -- procedure match_type_formals_actuals

-- pragma inline(match_type_formals_actuals);

--- Patterns

-- things other than calls:

match ?p=and_pattern(?p1,?p2) begin

p.partial_type := p1.partial_type;

require_type(p2,p1.partial_type);

end;

match ?p=condition(?cond) begin
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require_type(cond,boolean_partial_type);

p.partial_type := error_type; -- OK since always second argument of an AND

end;

match ?p=pattern_var(?d) begin

p.partial_type := d.partial_type;

end;

match ?p=rest_pattern(?r) begin

p.partial_type := r.partial_type;

end;

match ?p=no_pattern() begin

p.partial_type := error_type; -- i.e. anything

end;

-- occur only in later transformations:

match ?p=hole() begin

p.partial_type := error_type;

end;

match ?p=pattern_function(...) begin

p.partial_type := error_type;

end;

--- Statements

match effect(?e) begin

require_type(e,void_partial_type);

end;

match assign(?lhs,?rhs) begin

require_type(rhs,lhs.partial_type);

end;

match if_stmt(?cond,...) begin

require_type(cond,boolean_partial_type);

end;

match for_in_stmt(?formal,?seq,...) begin

require_type(formal,require_sequence_type(seq,seq.partial_type));

end;

pattern for_or_case_stmt(expr : Expression;

matchers : Matches) : Declaration

:= for_stmt(?expr,?matchers), case_stmt(?expr,?matchers,?);

match for_or_case_stmt(?expr,{...,matcher(?pat,?),...}) begin

require_type(pat,make_var(expr.computed_type));

end;
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--- Expressions

-- simple expressions:

match ?e=integer_const(...) begin

e.partial_type := integer_partial_type;

end;

match ?e=real_const(...) begin

e.partial_type := real_partial_type;

end;

match ?e=string_const(...) begin

e.partial_type := string_partial_type;

end;

match ?e=char_const(...) begin

e.partial_type := char_partial_type;

end;

match ?e=undefined() begin

e.partial_type := error_type;

end;

match ?e=no_expr() begin

e.partial_type := void_partial_type;

end;

match ?e1=typed_value(?e2,?ty) begin

pt : PartialType := make_simple_partial_type(ty);

require_type(e2,pt);

e1.partial_type := pt;

end;

match ?e1=typed_pattern(?e2,?ty) begin

pt : PartialType := make_simple_partial_type(ty);

require_type(e2,pt);

e1.partial_type := pt;

end;

match ?p1=match_pattern(?p2,?ty) begin

if not contextual_type_matchp(p2.computed_type,ty) then

p2.type_errors :> {"Pattern does not match type"};

endif;

p1.partial_type := make_simple_partial_type(ty);

end;

match ?e=append(?e1,?e2) begin

e.partial_type := e1.partial_type;

require_type(e2,e1.partial_type);

end;

match ?e=repeat(?seq) begin

e.partial_type := require_sequence_type(seq,seq.partial_type);
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end;

match ?e1=guarded(?e2,?cond) begin

require_type(cond,boolean_partial_type);

e1.partial_type := e2.partial_type;

end;

match ?e1=controlled(?e2,?formal,?seq) begin

require_type(formal,require_sequence_type(seq,seq.partial_type));

e1.partial_type := e2.partial_type;

end;

-- bogus values (for use only in pragmas)

pattern pragma_value() : Expression :=

signature_value(...),type_value(...),pattern_value(...);

attribute Expression.used_in_pragma : Boolean := false;

match pragma_call(?,{...,?e,...}) begin

e.used_in_pragma := true;

end;

match ?e=pragma_value(...) begin

e.partial_type := error_type;

if not e.used_in_pragma then

e.type_errors :> {"legal only in a pragma"};

endif;

end;

--- Type instantiation

-- We need to check signatures of type actuals and

-- the types of value actuals. We also must check

-- uses of modules to make sure they are always instantiated.

-- We must also check that type instantiation only happens in

-- type declarations.

match ?ty=type_inst(?m,?tactuals,?actuals) begin

case m.base_module begin

match contextual(?env,?md=module_decl(type_formals:=?tfs,

value_formals:=?vfs))

begin

-- if the types don't match up, there isn't much ability to continue

if length(tfs) /= length(tactuals) then

ty.type_errors :> {"wrong number of type parameters"};

else

built_env : Environment := type_inst_env(ty);

_ := match_type_formals_actuals(built_env,tfs,tactuals);

if not match_formals_actuals(no_var(built_env),vfs,actuals) then
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ty.type_errors :> {"too few value arguments"};

endif;

endif;

end; -- match contextual base module

end;

end;

pattern some_module_decl_or_renaming() : Declaration :=

module_decl(...), module_renaming(...);

match ?mod=module_use(?u) begin

case u.pre_contextual_def begin

match contextual(?,some_module_decl_or_renaming(...)) begin end;

match contextual(...) begin

mod.type_errors :> {"not a module"};

end;

end;

end;

match ?ty=type_use(?u) begin

case u.pre_contextual_def begin

match contextual(?,some_module_decl_or_renaming(...)) begin

ty.type_errors :> {"must be instantiated"};

end;

end;

end;

-- check where instantiation occurs

-- (legal only in type decls)

attribute Type.ok_to_instantiate_here : Boolean := false;

match some_type_decl((type):=?ty) begin

ty.ok_to_instantiate_here := true;

end;

match inheritance(?,?ty,?) begin

ty.ok_to_instantiate_here := true;

end;

match ?ty1=remote_type(?ty2) begin

ty2.ok_to_instantiate_here := ty1.ok_to_instantiate_here;

end;

match ?ty1=type_inst(?,{...,?ty2,...},?) begin

ty2.ok_to_instantiate_here := ty1.ok_to_instantiate_here;

end;

match ?ty1=private_type(?ty2) begin

ty2.ok_to_instantiate_here := ty1.ok_to_instantiate_here;
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end;

match ?ty=type_inst(...) begin

if not ty.ok_to_instantiate_here then

ty.type_errors :> {"cannot instantiate a module here"};

endif;

end;

--- EXCESS

-- to enable this module to compile, we have to make the unspecific

-- guards nonstrict and then add new dependencies to ensure that

-- dependencies are correct. Eventually these dependencies should be

-- added automatically.

pragma nonstrict_guards(module APS_TYPECHECK);

module CONTROL[] :: COMBINABLE[] := Boolean

begin

initial : Result := false;

combine : function (_,_:Result):Result := (or);

[T] function depends_on(_:T) : Result := false;

function use_control(_ : Result) : Boolean := false;

end;

type Control := CONTROL[];

[T] depends_on = (Control$depends_on : function(_:T):Control);

use_control = Control$use_control;

-- certain sets of type variables must be evaluated together

[phylum T :: TYPEABLE] begin

collection attribute T.type_variables : TypeVariableSet;

collection attribute T.partial_type_uses : Control;

match ?tv=type_variable(?,?owner:T) begin

owner.type_variables :> {tv};

end;

match ?x:T begin

x.partial_type_uses :> depends_on(x.partial_type);

end;

end;

signature EP_SEQUENCE :=

{Expressions,Patterns,Actuals,PatternActuals}, var PHYLUM[];

[phylum T :: TYPEABLE,{Expression,Pattern,Default}] begin

match ?p:T begin

case p begin

-- conditions may use pattern variables and so
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-- we have them link separately and don't pull in the

-- uses from the condition into the pattern:

match condition(?c) :? T begin

link_type_variables(c.type_variables,c.partial_type_uses);

end;

-- controlled things infer a type for the sequence and formal

-- together and once done, compute the type of the body.

match controlled(?expr,?f,?seq) :? T begin

f.type_variables :> seq.type_variables;

link_type_variables(f.type_variables,seq.partial_type_uses);

p.type_variables :> expr.type_variables;

p.partial_type_uses :> expr.partial_type_uses;

end;

else

[phylum U :: TYPEABLE,{Expression,Pattern,Declaration}]

begin

for p begin

match parent(?c:U) begin

p.type_variables :> c.type_variables;

p.partial_type_uses :> c.partial_type_uses;

end;

end;

end;

end;

end;

end;

[phylum T,U::TYPEABLE,{Expression,Pattern};

L :: EP_SEQUENCE,SEQUENCE[U]] begin

match ?p:T=parent(L${...,?c:U,...}) begin

p.type_variables :> c.type_variables;

p.partial_type_uses :> c.partial_type_uses;

end;

end;

procedure link_type_variables(type_variables : TypeVariableSet;

control : Control)

begin

pragma dynamic(control);

for tv in type_variables begin

if use_control(control) then

-- NB always false

-- but I'm playing it safe anyway:

tv.bindings :> {};

tv.chain :> {tv};

tv.consistent :> true;

tv.fits_signature :> true;

endif;

end;

end;
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-- everything but Pattern, Expression and Default

signature EBPED := {Signature,Type,Program,Unit,Declaration,

Block,Match,Direction}, var PHYLUM[];

[phylum T :: EBPED;

phylum U :: TYPEABLE,{Expression,Pattern,Default}] begin

match ?:T=parent(?c:U) begin

link_type_variables(c.type_variables,c.partial_type_uses);

end;

end;

[phylum T :: EBPED;

phylum U :: TYPEABLE,{Expression,Pattern,Default};

L :: EP_SEQUENCE,SEQUENCE[U]] begin

match ?:T=parent(L${...,?c:U,...}) begin

link_type_variables(c.type_variables,c.partial_type_uses);

end;

end;

end;

C.4 Expanding Inheritance

Inheritance inherits from the \no-op" copy transformation.

C.4.1 The \No-Op" Copy Transformation

This transformation creates a new tree with exactly the same structure as the one
being attributed. It also decorates the new tree with name binding information.

module APS_NOP_COPY[Input :: var ABSTRACT_APS[],

var APS_ENVIRON[Input],

var APS_BOUND[Input]]

--var APS_TYPE[Input]]

extends Input

begin

-- This module is useless unless inherited:

private;

---- COPY RECORD

-- The copy records record what things we need to fix up remote references

-- for. In this file, we only need to copy contextual declarations and

-- types, the environment change part is not currently used.

-- If one needs more things done, they must be added in an inheriting module.

type CopyRecords;

constructor copy_records(environ : Environment;

remote_records : RemoteRecords) : CopyRecords;
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type RemoteRecords := BAG[RemoteRecord];

type RemoteRecord;

constructor decl_remote_record(before : remote Declaration;

after : remote NewTree$Declaration)

: RemoteRecord;

constructor type_remote_record(before : remote Type;

after : remote NewTree$Type)

: RemoteRecord;

no_copy_records : CopyRecords := copy_records(empty_env,{});

function merge_copy_records(cr1,cr2 : CopyRecords) : CopyRecords begin

case cr1 begin

match copy_records(?e1,?) begin

case cr2 begin

match copy_records(?e2,?rr2) begin

-- We ignore rr1 because we will only need to look at

-- local copy records, and also sometimes rr1 = {}

result := copy_records(merge_environ(e1,e2),rr2);

end;

end;

end;

end;

end;

function extend_env(env : Environment; cr : CopyRecords) : CopyRecords

begin

case cr begin

match copy_records(?sub,?rrs) begin

result := copy_records(merge_environ(env,sub),rrs);

end;

end;

end;

function extend_remote_records(cr : CopyRecords; rrs : RemoteRecords)

: CopyRecords

begin

case cr begin

match copy_records(?env,?rrs2) begin

result := copy_records(env,{rrs...,rrs2...});

end;

end;

end;

--- Functions that use copy records.

-- first the environment is used in copy_Environment
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function copy_Environment(env : Environment;

copy_records : CopyRecords)

: NewTreeWithEnviron$Environment

begin

case copy_records begin

match copy_records(?outer,?) begin

result := inherited_copy_Environment(merge_environ(outer,env),

copy_records);

end;

end;

end;

-- (One function for each kind of thing recorded in a remote record.)

function copy_remote_Declaration(decl : remote Declaration;

copy_records : CopyRecords)

: remote NewTree$Declaration

begin

case copy_records begin

match copy_records(?,{...,decl_remote_record(!decl,?new),...}) begin

result := new;

end;

else

result := decl.copied_Declaration;

end;

end;

function copy_remote_Type(ty : remote Type; copy_records : CopyRecords)

: remote NewTree$Type

begin

case copy_records begin

match copy_records(?,{...,type_remote_record(!ty,?new),...}) begin

result := new;

end;

else

result := ty.copied_Type;

end;

end;

--- Recording copies:

-- after a copy, we need to record the original->copy binding.

[phylum T :: PHYLUM[]] begin

function new_copy_records(new_thing : remote T) : CopyRecords

begin

collection remote_records : RemoteRecords;

for new_thing begin
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match ancestor(?d:NewTree$Declaration) begin

remote_records :> {decl_remote_record(d.original_Declaration,d)};

end;

match ancestor(?ty:NewTree$Type) begin

remote_records :> {type_remote_record(ty.original_Type,ty)};

end;

end;

result := copy_records(empty_env,remote_records);

end;

end;

--- Copy Attributes

-- depends on self can be copied directly to the new tree:

match ?new:NewTree$Declaration begin

new.FinishedTree$depends_on_self :=

new.original_Declaration.depends_on_self;

end;

-- copy the contextual def

match ?use:Use begin

use.copied_Use.FinishedTree$contextual_def :=

copy_ContextualDeclaration(use.contextual_def,

local_use_copy_records(use));

end;

-- overridden when the use is being moved.

function local_use_copy_records(u : remote Use) : CopyRecords

:= no_copy_records;

procedure copy_Use(u : remote Use; copy_records : CopyRecords)

: NewTree$Use

begin

new_use : NewTree$Use := inherited_copy_Use(u, copy_records);

new_use.FinishedTree$contextual_def :=

copy_ContextualDeclaration(u.contextual_def,copy_records);

end;

inherit COPY_ABSTRACT_APS[Input,CopyRecords] begin

type NewTree = Copy;

type NewUnits = Copy$Units;

type NewDeclarations = Copy$Declarations;

type NewActuals = Copy$Actuals;

type NewPatternActuals = Copy$PatternActuals;

-- copied attributes:

var copied_Program = copied_Program;

var copied_Unit = copied_Unit;

var copied_Declaration = copied_Declaration;
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var copied_Expression = copied_Expression;

var copied_Pattern = copied_Pattern;

var copied_Type = copied_Type;

var copied_Use = copied_Use;

var copied_Units = copied_Units;

var copied_Declarations = copied_Declarations;

-- original attributes:

var original_Declaration = original_Declaration;

var original_Type = original_Type;

-- copy procedures

copy_Unit = copy_Unit;

copy_Declaration = copy_Declaration;

copy_Type = copy_Type;

copy_Expression = copy_Expression;

copy_Pattern = copy_Pattern;

copy_Units = copy_Units;

copy_Declarations = copy_Declarations;

copy_Use -> copy_Use;

var inherited_copy_Use = copy_Use;

end;

inherit APS_COPY_ENVIRON[Input,NewTree,CopyRecords] begin

var type NewTreeWithEnviron = CopyWithEnviron;

var inherited_copy_Environment = copy_Environment;

copy_ContextualDeclaration = copy_ContextualDeclaration;

copy_Environment -> copy_Environment;

copy_remote_Declaration -> copy_remote_Declaration;

copy_remote_Type -> copy_remote_Type;

end;

public var type FinishedTree := APS_BOUND[NewTreeWithEnviron];

end;

Inheritance is implemented using a procedure because an inherited module may
recursively inherit another module.

module APS_EXPAND_INHERIT[Input :: var ABSTRACT_APS[],

var APS_ENVIRON[Input],

var APS_TYPE[Input],

var APS_BOUND[Input],

var APS_RENAME[Input]]

extends Input

begin

var type Expanded :: var ABSTRACT_APS[], var APS_ENVIRON[Expanded],

var input APS_BOUND[Expanded]

:= private FinishedTree;

type Errors := BAG[String];
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collection attribute Declaration.inherit_errors : Errors;

private ;

--- Mappings

constructor inheritance_copy_records

(env : Environment;

remote_records : RemoteRecords;

replacement_records : ReplacementRecords) : CopyRecords;

type ReplacementRecords := BAG[ReplacementRecord];

type ReplacementRecord;

-- to perform the inheritance, we need to keep track of

-- replacements (both explicit and those implied by the

-- type and value actuals to the type instance)

-- as well as the copy records. We have to worry about four

-- kinds of replacements: one for each namespace

-- (and note that the value replacement should not affect lvalues).

constructor value_replacement_record(before,after : ContextualDeclaration)

: ReplacementRecord;

constructor pattern_replacement_record(before,after : ContextualDeclaration)

: ReplacementRecord;

constructor type_replacement_record(before,after : ContextualDeclaration)

: ReplacementRecord;

constructor signature_replacement_record(before,after:ContextualDeclaration)

: ReplacementRecord;

pattern some_replacement_record(before,after : ContextualDeclaration)

: ReplacementRecord :=

value_replacement_record(?before,?after),

pattern_replacement_record(?before,?after),

type_replacement_record(?before,?after),

signature_replacement_record(?before,?after);

-- factoring device:

function replacement_record_matchp(rr1,rr2 : Replacement) : Boolean begin

case ReplacementRecords${rr1,rr2} begin

match {... and value_replacement_record(...)} begin

result := true;

end;

match {... and pattern_replacement_record(...)} begin

result := true;

end;

match {... and type_replacement_record(...)} begin

result := true;
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end;

match {... and signature_replacement_record(...)} begin

result := true;

end;

end;

end;

-- yet another factoring device:

function make_replacement_record(before,after : ContextualDeclaration;

model : ReplacementRecord)

: ReplacementRecord

begin

case model begin

match value_replacement_record(...) begin

result := value_replacement_record(before,after);

end;

match pattern_replacement_record(...) begin

result := pattern_replacement_record(before,after);

end;

match type_replacement_record(...) begin

result := type_replacement_record(before,after);

end;

match signature_replacement_record(...) begin

result := signature_replacement_record(before,after);

end;

end;

end;

pattern some_copy_records(environ : Environment;

remote_records : RemoteRecords) : CopyRecords

:= copy_records(?environ,?remote_records),

inheritance_copy_records(?environ,?remote_records,...);

function merge_copy_records(cr1,cr2 : CopyRecords) : CopyRecords begin

case cr1 begin

match inheritance_copy_records(?e1,?,?rps1) begin

case cr2 begin

match inheritance_copy_records(?,?rms2,?rps2) begin

--environments never used for inheritance_copy_records

result := inheritance_copy_records

(e1,rms2,

{rps1...,merge_replacement_record(rps1,rp2) for rp2 in rps2});

end;

match copy_records(?,?rms2) begin

result := inheritance_copy_records(e1,rms2,rps1);

end;

end;

end;

match copy_records(?e1,?) begin

case cr2 begin

match inheritance_copy_records(?,?rms2,?rps2) begin
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result := inheritance_copy_records(e1,rms2,rps2);

end;

match copy_records(?,?rms2) begin

result := copy_records(e1,rms2);

end;

end;

end;

end;

end;

function merge_replacement_record(rps : ReplacementRecords;

rr : ReplacementRecord)

: ReplacementRecord

begin

case rr begin

-- needs factoring:

match some_replacement_record(?mid,?after) begin

case rps begin

match {...,?rr2=some_replacement_record

(?before,?new if contextual_decl_equalp(mid,new))

if replacement_record_matchp(rr,rr2),...}

begin

result := make_replacement_record(before,new,rr);

end;

end;

end;

else

result := rr;

end;

end;

function contextual_decl_equalp(cd1,cd2 : ContextualDeclaration) : Boolean

begin

case cd1 begin

match contextual(?e1,?decl) begin

case cd2 begin

match contextual(?e2,!decl) begin

result := environment_equalp(e1,e2);

end;

end;

end;

end;

result := false;

end;

--(NB: Would be shorter if we had an expression 'match' predicate)

function value_replacement_record_p(cr : ReplacementRecord) : Boolean := false begin

case cr begin

match value_replacement_record(...) begin result := true; end;

end;
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end;

function pattern_replacement_record_p(cr : ReplacementRecord) : Boolean := false

begin

case cr begin

match pattern_replacement_record(...) begin result := true; end;

end;

end;

function type_replacement_record_p(cr : ReplacementRecord) : Boolean := false begin

case cr begin

match type_replacement_record(...) begin result := true; end;

end;

end;

function signature_replacement_record_p(cr : ReplacementRecord) : Boolean := false

begin

case cr begin

match signature_replacement_record(...) begin result := true; end;

end;

end;

function no_replacement_record_p(_ : ReplacementRecord) : Boolean := false;

-- The semantics of replacement is that Contextual Declarations are

-- looked up once to see if there is a replacement and once again

--(NB: This would be easier if we could pass patterns as parameters)

function convert_ContextualDeclaration

(cd : ContextualDeclaration;

copy_records : CopyRecords;

replacement_record_match : function(_:CopyRecord) : Boolean)

: NewTreeWithEnviron$ContextualDeclaration

begin

replaced : ContextualDeclaration := cd;

case copy_records begin

match {...,?rr=some_replacement_record(?before,?after)

if contextual_declaration_equalp(before,cd)

and replacement_record_match(rr),...} begin

replaced := after;

end;

end;

--?? Note on old version of copy_ContextualDeclaration

--?? I don't understand fully. It may be relevant here:

--:: we have to clean up the environment because it

--:: may include inherited bound environments from *other*

--:: inheritances!

result := copy_ContextualDeclaration(replaced,copy_records);

end;

[Base; T :: CONTEXTUAL[Base]] begin

function remove_inheritance(x : T) : T begin

case x begin
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match contextual(?environ,?thing) begin

result := contextual(remove_inheritance_from_environ(environ),

thing);

end;

else

result := x;

end;

end;

end;

function remove_inheritance_from_environ(e : Environment) : Environment

begin

case e begin

match bound_rib(?decl,contextual(?,inheritance(...)),?,?,?,?next) begin

result := unbound_rib(decl,decl.environment);

end;

match bound_rib(?decl,?ra,?i,?v,?tas,?next) begin

result := bound_rib(decl,remove_inheritance(ra),i,v,

{remove_inheritanceta(ta) for ta in tas},

remove_inheritance_from_environ(next));

end;

else

result := e;

end;

end;

--- Performing Inheritace

-- Most nodes need a inherited_copy_records

-- attribute to keep track of surrounding inherit blocks

-- For most nodes in the tree (those not inside an inherit block),

-- this attribute will be empty:

[phylum T :: PHYLA]

attribute T.inherited_copy_records : CopyRecords := no_copy_records;

-- empty for most declarations,

-- one element for replacements and

-- large for inheritance "declarations"

attribute Declaration.inheritance_replacements : ReplacementRecords := {};

-- caching useful information

attribute Declaration.inheritance_module : remote Declaration := nil;

-- we have to assign newTree$Declarations to a type so we can use it

type NewDeclarations :: SEQUENCE[NewTree$Declaration] :=

NewTree$Declarations;
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-- This attribution clause overrides one inherited from

-- APS_TREE_COPY via APS_NOP_COPY:

match ?i=inheritance(?ty=type_inst(type_use(?u),?tactuals,?vactuals),

?b=block(?decls))

begin

-- override default copy to avoid using trees twice

b.copied_Block := NewTree$block({}); -- ignored

ty.copied_Type := NewTree$no_type(); -- ignored

case u.expanded_def begin

match contextual(?env,?md=module_decl(type_formals:=?tfs,

value_formals:=?vfs,

result_decl:=?rtd,

precontents:=block(?pdecls),

contents:=?mb=block(?idecls)))

if not md.depends_on_self -- avoid inheriting circular modules

if length(tfs) = length(tactuals) -- don't inherit if the ...

if length(vfs) = length(vactuals) -- ... instantiation is bad

begin

unbound_env : Environment := mb.environment;

-- in order to make inheritance of modules with inheritance

-- easier, we cache two useful attributes:

replacements : ReplacementRecords :=

{decl.inheritance_replacements... for decl in decls,

type_replacement_record(contextual(unbound_env,nth(i,tfs)),

as_contextual_decl(nth(i,tactuals)))

for i in 0..(length(tfs)-1),

value_replacement_record(contextual(unbound_env,nth(i,vfs)),

as_contextual_decl(nth(i,vactuals)))

for i in 0..(length(vfs)-1)};

copy_records : CopyRecords :=

merge_copy_records

(i.inherited_copy_records,

inheritance_copy_records

(i.environment,new_copy_records

-- NB: note circular dependence broken

-- by procedure parameter

(i.new_Declarations,replacements)));

i.inheritance_replacements := replacements;

b.inherited_copy_records := copy_records;

i.inherited_module := md;

new_env : Environment :=

bound_rib(md,contextual(i.environment,i.predefined_use),true,true,
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{contextual(t.environment,t) for t in tactuals},

env);

-- the inheritance decl is replaced

i.copied_Declaration :=

copy_Declaration(rtd,copy_records);

i.new_Declarations :=

{i.copied_Declaration,

copy_Declarations(pdecls,copy_records)...,

decls.copied_Declarations...,

copy_Declarations(idecls,copy_records)...};

end;

else -- bad inheritance, just replace with the body:

i.copied_Declaration := NewTree$no_decl();

i.new_Declarations := decls.copied_Declarations;

i.inherit_errors :> {"bad inheritance"};

end;

end;

[phylum T :: {Signature,Type,Expression,Pattern}] begin

pattern with_use(u : Use) : T :=

sig_use(?u), qual_sig(sig_use(?u)),

type_use(?u), qual_type(?,type_use(?u)),

pattern_use(?u), qual_pattern(?,pattern_use(?u)),

value_use(?u), qual_value(?,value_use(?u)),

typed_pattern(with_use(?u),?), typed_value(with_use(?u),?);

function as_contextual_decl(x : T) : ContextualDeclaration begin

case x begin

match with_use(?u) begin

result := u.contextual_def;

end;

else

result := not_found;

end;

end;

end;

match ?d=value_replacement(with_use(?ufrom),with_use(?uto)) begin

d.replacements :=

{value_replacement_record(remove_inheritance(ufrom.contextual_def),

uto.contextual_def)};

end;

match ?d=pattern_replacement(with_use(?ufrom),with_use(?uto)) begin

d.replacements :=

{pattern_replacement_record(remove_inheritance(ufrom.contextual_def),

uto.contextual_def)};

end;

match ?d=type_replacement(with_use(?ufrom),with_use(?uto)) begin

d.replacements :=
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{type_replacement_record(remove_inheritance(ufrom.contextual_def),

uto.contextual_def)};

end;

match ?d=signature_replacement(with_use(?ufrom),with_use(?uto)) begin

d.replacements :=

{signature_replacement_record(remove_inheritance(ufrom.contextual_def),

uto.contextual_def)};

end;

-- transfer inherited_copy_records down:

[phylum P,C :: PHYLA] begin

match ?p:P=parent(?c:C) begin

c.inheritance_copy_records := p.inheritance_copy_records;

end;

end;

--- Uses

-- we need to convert uses according to the proper namespace

attribute Use.replacement_record_predicate

: function(_:CopyRecord) : Boolean

:= no_replacement_record_p;

match ?e=value_use(?u) begin

if e.lvaluep then

u.replacement_record_predicate := no_replacement_record_p;

else

u.replacement_record_predicate := value_replacement_record_p;

endif;

end;

match pattern_use(?u) begin

u.replacement_record_predicate := pattern_replacement_record_p;

end;

match type_use(?u) begin

u.replacement_record_predicate := type_replacement_record_p;

end;

match signature_use(?u) begin

u.replacement_record_predicate := signature_replacement_record_p;

end;

match module_use(?u) begin

u.replacement_record_predicate := type_replacement_record_p;

end;

match class_use(?u) begin

u.replacement_record_predicate := signature_replacement_record_p;

end;

-- copy the contextual def
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match ?use:Use begin

use.copied_Use.FinishedTree$contextual_def :=

copy_ContextualDeclaration(use.contextual_def,

use.inheritance_copy_records,

u.replacement_record_predicate);

end;

procedure copy_Use(u : remote Use; copy_records : CopyRecords)

: NewTree$Use

begin

new_use : NewTree$Use := inherited_copy_Use(u, copy_records);

new_use.FinishedTree$contextual_def :=

convent_ContextualDeclaration(u.contextual_def,copy_records,

u.replacement_record_predicate);

end;

--- Sequence flattening

-- when we copy Declarations (or Units), we flatten the result:

match ?decls=Declarations$single(?decl) begin

case decl begin

match inheritance(...) begin

decls.copied_Declarations := copy_Declarations(decls);

end;

else

decls.copied_Declarations := decl.new_Declarations;

end;

end;

procedure copy_Declarations(decls : remote Declarations;

copy_records : CopyRecords)

: NewDeclarations

begin

case decls begin

match Declarations$single(?decl) begin

case decl begin

match inheritance(?,block(?decls)) begin

case decl.inheritance_module begin

match module_decl(result_decl:=?rdecl,

contents:=block(?idecls))

begin

--Q: What about decl.inheritance_copy_records ?

--A: We recreate them as we traverse the structure.

new_copy_records :=

merge_replacement_records(copy_records,

decl.inheritance_replacements);

result := NewDeclarations$

{copy_Declarations(rdecls,new_copy_records)...,
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copy_Declarations(decls,copy_records)...,

copy_Declarations(idecls,new_copy_records)...};

end;

else

result := NewDeclarations${};

end;

end;

match no_decl() begin

result := NewDeclarations${};

end;

match some_replacement() begin

result := NewDeclarations${};

end;

else

result := NewDeclarations${copy_Declaration(decl,copy_records)};

end;

end;

else

result := inherited_copy_Declarations(decls,copy_records);

end;

end;

-- we have to ensure that in places where copied_Declaration is used

-- that we turn off the new_Declarations attribute:

match ?md=module_decl(result_type:=?result_decl) begin

result_decl.new_Declarations := {};

end;

match ?sd=signature_decl(result_type:=?result_decl) begin

result_decl.new_Declarations := {};

end;

match ?ft=function_type(?formals,?rd=value_decl(...)) begin

rd.new_Declarations := NewDeclarations${};

end;

match ?e=controlled(formal:=?formal) begin

formal.new_Declarations := NewDeclarations${};

end;

-- To allow a Declaration to generate multiple decls in its copy,

-- we define new attributes coped_Declarations and copied_Units

-- Parts of these declarations must override the definitions inherited

-- below and so must come before the inherit.

attribute Declaration.new_Declarations : NewDeclarations;
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match ?d=no_decl() begin

d.new_Declarations := NewDeclarations${};

end;

match ?d=some_replacement() begin

d.new_Declarations := NewDeclarations${};

end;

-- otherwise, just grab the (local) copy

match ?d:Declaration begin

d.new_Declarations := NewDeclarations${d.copied_Declaration};

end;

-- and we have to do something similar with units too:

type NewUnits :: SEQUENCE[NewTree$Unit] := NewTree$Units;

attribute Unit.New_Units : NewUnits;

match ?u=no_unit() begin

u.new_Units := NewUnits${};

end;

match ?u=decl_unit(?d) begin

u.new_Units := NewUnits${NewTree$decl_unit(d)

for d in d.new_Declarations};

end;

match ?u:Unit begin

u.new_Units := NewUnits${u.copied_Unit};

end;

match ?s=Units$single(?u) begin

s.copied_Units := u.new_Units;

end;

--- Inheritance using inheritance

-- these are right at the end so all matches in this module override

-- the ones here:

inherit APS_NOP_COPY[Input] begin

type NewTree = NewTree;

type NewTreeWithEnviron = NewTreeWithEnviron;

type FinishedTree = FinishedTree;

-- sequence types

type NewDeclarations = NewDeclarations;

type NewUnits = NewUnits;
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-- copied attributes:

copied_Unit = copied_Unit;

copied_Declaration = copied_Declaration;

copied_Block = copied_Block;

copied_Signature = copied_Signature;

copied_Type = copied_Type;

copied_Use = copied_Use;

copied_Units = copied_Units;

copied_Declarations = copied_Declarations;

-- copy functions

copy_Declaration = copy_Declaration;

copy_Declarations -> copy_Declarations;

inherited_copy_declarations = copy_Declarations;

-- original attributes:

original_Declaration = original_Declaration;

original_Type = original_Type;

-- CopyRecord declarations:

type CopyRecords = CopyRecords;

type RemoteRecords = RemoteRecords;

copy_records = copy_records;

pattern copy_records = copy_records;

pattern copy_records -> some_copy_records;

merge_copy_records -> merge_copy_records;

[phylum T :: PHYLUM[]]

new_copy_records =

(new_copy_records : function(_:remote T):CopyRecords);

-- miscellaneous:

copy_ContextualDeclaration = copy_ContextualDeclaration;

copy_remote_Declaration = copy_remote_Declaration;

copy_remote_Type = copy_remote_Type;

local_use_copy_records -> inheritance_copy_records;

copy_Use -> copy_Use;

end;

end;

C.5 Pattern Matching

C.5.1 Computing Pattern Lookaheads

module APS_LOOK_AHEAD[Input :: var APS_TREE[],

var APS_PATTERN[Input],

var APS_ENVIRON[Input],

var APS_BOUND[Input]]

extends Input

begin
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type Constructors := ORDERED_SET[remote Declaration]((==), (<<));

type ConstructorsLattice := UNION_LATTICE[remote Declaration,Constructors];

type Position = PAIR[remote Declaration,Integer];

function position_equal(p1,p2 : Position) : Boolean begin

case {p1,p2} begin

match {pair(?c,?i),pair(!c,!i)} begin

result := true;

end;

else

result := false;

end;

end;

function position_less(p1,p2 : Position) : Boolean begin

case {p1,p2} begin

match {pair(?c,?i1),pair(!c,?i2)} begin

result := i1 < i2;

end;

match {pair(?c1,?),pair(?c2,?)} begin

result := c1 << c2;

end;

end;

end;

type Positions := ORDERED_SET[Position]((=),position_less);

type PositionsLattice := UNION_LATTICE[Position,Positions];

attribute (p : Pattern).constructors : ConstructorsLattice

:= p.first_constructors;

circular attribute Pattern.positions : PositionsLattice;

collection attribute Declaration.phylum_constructors : Constructors := {};

collection attribute Declaration.phylum_positions : Positions := {};

private;

-- collect all the constructors for a phylum:

match ?cd=constructor_decl(...) begin

cd.phylum_for_constructor :> {cd};

end;

-- collect all the positions a phylum may appear in:

attribute Formal.formal_index : Integer := 0;

match ?cd=constructor_decl(as_value:=a_value((type):=

function_type(?formals,?)))

begin

formal.formal_index for formal:Formal in formals,_ :=

1,formals.formal_index+1 for formal:Formal in formals;

for formal:Formal in formals begin

case formal begin

match a_value((type):=?ty) begin



432

case ty.type_as_phylum begin

match ?pd=phylum_decl(...) begin

pd.phylum_positions :> {pair(cd,formal.formal_index)};

end;

end;

end;

end;

end;

end;

-- First we compute bottom-up the constructors for each pattern

-- (The attribute must be circular because of pattern definition recursion).

-- Later and_patterns are used to cut down on the constructors for

-- each pattern particpating in an and_pattern.

circular attribute Pattern.first_constructors : ConstructorsLattice;

-- the rules for and_patterns and choice_patterns are analagous,

-- buit and_pattern has a rule for the final constructors set:

match ?p=and_pattern(?p1,?p2) begin

p.first_constructors := -- |/\| here means set intersection

p1.first_constructors |/\| p2.first_constructors;

p1.positions :> p.positions;

p2.positions :> p.positions;

-- cut down final constructors result:

p1.constructors := p.constructors;

p2.constructors := p.constructors;

end;

match ?p=choice_pattern(?p1,?p2) begin

p.first_constructors :=

p1.first_constructors |\/| p2.first_constructors;

p1.positions := p.positions;

p2.positions := p.positions;

end;

match ?p=simple_pattern(?pf,?actuals) begin

case pf begin

-- for pattern calls:

match pattern_function(?formals,?body) begin

p.first_constructors := body.first_constructors;

-- we collect up all the positions for the body ...

circular collection body_positions : PositionsLattice;

-- ... and then assign them:

body.positions := body_positions;

body_positions :> p.positions;

for body begin

match pattern_scope(?holep=hole()) begin

holep.first_constructors := body.first_constructors;
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body_positions :> holep.positions;

end;

end;

for arg:Pattern in actuals begin

-- similarly, for the arguments, we get a collection:

circular collection arg_positions : Positions;

circular collection arg_constructors : Constructors;

arg.positions := arg_positions;

arg.constructors := arg_constructors;

for body begin

match pattern_scope(?pv=pattern_variable(...)

if pv.binding_formal == arg.pattern_formal)

begin

pv.first_constructors := arg.first_constructors;

arg_positions :> pv.positions;

arg_constructors :> pv.constructors;

end;

end;

end;

end;

-- for constructor calls:

else

case pf.pattern_declaration.pattern_as_constructor begin

match ?cd=constructor_decl(...) begin

p.first_constructors :> {cd};

for arg:Pattern in actuals begin

case arg.pattern_formal begin

-- make sure not an error (nil) and ...

match ?formal=a_value((type):=?ty) begin

case ty.type_as_phylum begin

-- ... make sure a child field:

match ?pd=phylum_decl(...) begin

arg.positions :>

{pair(cd,formal.formal_index)};

end;

end;

end;

end; -- case arg.pattern_formal

end; -- for arg in args

end; -- match constructor_decl

end; -- case constructor for pf

end; -- case pf

end;

-- We need to have a special case for when further pattern matching is done

-- on a pattern variable for which we already have positions:

pattern pattern_match_stmt(expr : Expression; matchers : Matches) : Statement

= for_stmt(?expr,?matchers),case_stmt(?expr,?matchers,?);

match pattern_match_stmt(?e=value_name(?),{...,matcher(pat:=?pat),...})

begin
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case e.value_binding.as_pattern_var begin

match ?p=pattern_var(?) begin

pat.positions := p.positions;

end;

end;

end;

-- handle pattern vars, semantic conditions for constructors

-- handle top-level matches for positions:

-- NB: lexical ordering makes these definitions defaults:

match ?p:Pattern begin

case p.pattern_type.type_as_phylum begin

match ?pd=phylum_decl(...) begin

p.first_constructors := pd.phylum_constructors;

p.positions := pd.phylum_positions;

end;

end;

end;

end;

C.5.2 Choosing a Direction

-- Specify a direction for each attribute, synthesized (or inherited)

module APS_DIRECTION[Input :: var APS_TREE[]] extends Input

begin

input attribute Declaration.synthesized : Boolean := true;

end;

-- Choose a direction for each attribute, synthesized or inherited

module APS_DIRECTION[Input :: var APS_TREE[],

var APS_ENIVRON[Input],

var APS_BOUND[Input],

var APS_LOOK_AHEAD[Input]]

:: var APS_DIRECTED[Input]

extends Input

begin

attribute Declaration.synthesized : Boolean;

private;

constant inherited_symbol : Symbol := make_symbol("inherited");

constant synthesized_symbol : Symbol := make_symbol("synthesized");

collection attribute pragma_specified_inherited : Boolean := false, (or);

collection attribute pragma_specified_synthesized : Boolean := false, (or);

-- The pragma takes precedence over any calculations:
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match ad=attribute_decl(...) begin

if ad.pragma_specified_synthesized then

-- (Really, we should check that the attribute isn't specified

-- as both inherited and synthesized)

ad.synthesized := true;

elsif ad.pragma_specified_inherited then

ad.synthesized := false;

endif;

end;

match pragma_decl(?sym,{?v=value_name(...)}) begin

case v.value_as_attribute begin

match ?ad=attribute_decl(...) begin

case sym begin

match !inherited_symbol begin

ad.pragma_specified_inherited :> true;

end;

match !synthesized_symbol begin

ad.pragma_specified_synthesized :> true;

end;

end;

end;

end;

end;

-- we make a count of how many equations there will be if the

-- attribute is synthesized versus inherited. The smaller set wins:

collection attribute Declaration.num_if_synthesized : Integer := 0, (+);

collection attribute Declaration.num_if_inherited : Integer := 0, (+);

match ad=attribute_decl(...) begin

ad.synthesized := ad.num_if_synthesized <= ad.num_if_inherited;

end;

attribute Declaration.unknown_synthesized : Integer;

attribute Declaration.unknown_inherited : Integer;

match ?ad=attribute_decl(...) begin

case ad.phylum_for_attribute begin

match ?pd=phylum_decl(...) begin

ad.unknown_synthesized := length(pd.phylum_constructors);

ad.unknown_inherited := length(pd.phylum_positions);

end;

end;

end;

pattern attr_ref(node : Expression; a : Expression) : Expression

= funcall(?a,{?node}) if a.value_binding.as_attribute /= nil;

match assign_stmt(attr_ref(?a,?node),?) begin

case a.value_binding.as_attribute begin

match ?ad=attribute_decl(...) begin
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local num_syn : Integer := ad.unknown_synthesized;

local num_inh : Integer := ad.unknown_inherited;

case node.value_binding begin

match ?vd=value_decl(...) begin

case vd.value_decl_as_pattern_var begin

match ?pv=pattern_var(...) begin

num_syn := length(pv.constructors);

num_inh := length(pv.positions);

end;

end;

end;

end;

ad.num_if_synthesized :> num_syn;

ad.num_if_inherited :> num_inh;

end;

end;

end;

end;


